

2430 Jingle Pot Rd Nanaimo, British Columbia Canada V9R 6W2 Tel: 250.585.0800

www.waterlineresources.com

September 13, 2018 2768-18-001

Cowichan Valley Regional District 175 Ingram Street Duncan, BC V9L 1N8

Attention: David Parker, Engineering Technologist III

RE: Saltair Groundwater Exploration – TW18-1 Drilling and Testing

1.0 INTRODUCTION AND BACKGROUND

The Cowichan Valley Regional District (CVRD) is exploring the potential of developing a fresh groundwater supply to service the community of Saltair. The CVRD anticipates a water demand of approximately 1,090 to 1,635 m³/day (200 to 300 USPGM).

To support this objective, Waterline Resources Inc. (Waterline) completed a Phase 1 groundwater potential study in 2017 to compile and review available geologic and hydrogeologic information related to the study area and provide drilling targets¹. Based on this preliminary work, an alluvial fan at the confluence of North and West Banon Creeks was chosen as the preferred target for groundwater exploration. The alluvial fan had previously been mapped and identified as a potential aquifer target in a 1965 report by the provincial government during a field reconnaissance program by J.C. Foweraker², The potential aquifer target is located approximately 3.5 km southwest of Saltair (the site; Figure 1). The mapped extent of the alluvial fan is presented on Figure 2 (shown as yellow).

A seismic geophysical survey was conducted as part of the 2017 Phase 1 study to define the thickness of potential permeable zones within the accessible portion of the alluvial fan and help select the best possible location for drilling³. The geophysical seismic lines are presented on Figure 2 (red points). The preliminary drilling target was chosen because the seismic results indicated the overburden was the thickest in this area and because of its proximity to an access road. The target is located on forested crown land, approximately 100 m east of Bannon Creek.

Based on the results of the Phase 1 study, the CVRD retained Waterline to complete a Phase 2 drilling and testing program after a crown land tenure was attained by the CVRD.

¹ Waterline Resources Inc., 2017. Preliminary Hydrogeological Site Characterization for Saltair Groundwater Source, Including Cost Estimate (CVRD No. ES-031-16). 2768-17-001.

² BC Government, 1965. Water Resources Groundwater Development.

³ Frontier Geosciences Inc. 2017. Seismic Refraction Survey Report. Saltair Groundwater Project. Saltair, BC. Submitted to the Cowichan Valley Regional District.

For the readers convenience, Section 6.0 provides definitions for the acronyms used throughout the report.

1.1 Objectives and Scope of Work

The primary objective of the groundwater exploration program was to drill and test a potential aquifer target to determine if sufficient groundwater supply exists to support future development opportunities at the site. To address CVRD's objectives, Waterline completed the following scope of work:

- Provided hydrogeological support during the drilling, construction, and testing of one water supply test well (TW18-1), shown on Figure 2;
- Processed and interpreted the aquifer test data and estimated the long-term sustainable yield of the well;
- Collected groundwater samples for water quality analysis;
- Presented the results to the CVRD; and
- Provided a short technical memorandum to summarize the results of the program and provide recommendations regarding long-term groundwater supply options at the site.

2.0 RESULTS

2.1 Drilling and Well Construction

The drilling program was completed between April 9-17, 2018 by Drillwell Enterprises Ltd. (Drillwell) using a Foremost DR12 dual-rotary rig. Surface casing was installed by cementing a 12-inch steel casing from surface to 5 mbgl. The subsurface geology encountered at TW18-1 can be summarized as follows:

- 0 to 21.3 mbgl: fine to coarse grained sand and gravel;
 - Water-bearing from 10.7 mbgl; and
 - Air-lifting estimate 163 to 360 m3/d (30 to 66 USgpm).
- 21.3 to 22.9 mbgl: Fine-grained silty sand;
 - Less water production after this unit.
- 22.9 to 38.1 mbgl: Fine-grained sand, some silt;
 - Water-bearing, however lower water production.
- 38.1 to 47.5 mbgl: Shale bedrock, competent, no water-bearing fracture zones encountered.

The results indicated there were two potential aquifer zones: The upper sand and gravel from 10.7 to 21.3 mbgl, and the lower sand unit from 22.9 to 38.1 mbgl. The upper sand and gravel unit corresponds to Layer 2 on the geophysics results (shown in green on Figure 3), while the lower sand unit corresponds to Layer 3 (shown in yellow on Figure 3).

Air-lift testing indicated the upper sand and gravel aquifer from 10.7 to 22 m was the most prolific zone encountered during drilling; however, the total available drawdown (TAD) of the well would be limited for this aquifer. In addition, the Hazard Screening outlined in the BC Guidance Document

for Determining Ground Water at Risk of Containing Pathogens (GAPR)⁴ indicates that wells within 150 m of a water body with an intake depth of less than 15 m are at higher risk of being GARP.

Waterline retained McElhanney Consulting Services Ltd.(McElhanney) to complete grain size analyses on 16 sediment samples collected from 15.2 to 36.6 m depth to help determine a screen interval and select an appropriate slot size. The grain size distribution curves are provided for reference as Appendix C. The analyses indicated that although the lower sand unit contained a higher percentage of silt than the upper sand and gravel; an adequate yield may have been produced from the lower sand unit with a long enough well screen. Completing the lower sand unit would maximize the total available drawdown and decrease the risk of GARP.

TW18-1 was first completed with 15 ft of 30 slot and 5 ft of 40 slot telescoping stainless steel wire-wrap screen across the lower sand from 29 to 35 mbgl. Air-lift testing was performed for 45 minutes to test the potential yield of the lower sand aquifer at a rate of 82 to 44 m³/d (15 to 8 USGPM). The results indicated that although the well was producing, it would not provide the rate required by the CVRD. The screen was pulled, and the borehole was backfilled with pea gravel to a depth of 21.3 mbgl.

TW18-1 was then completed with 15 ft of 30 slot screen installed across the sand and gravel interval from 16.3 to 21.3 m. The theoretical yield of a screen of this size is approximately 1,800 m³/d (330 USgpm). The screen was developed by air lifting techniques at a rate of 327 to 436 m³/d (60 to 80 USgpm) to remove fine sediment from around the well and create a natural filter pack. Well completion details and drilling observations are presented in the borehole log (Appendix B) and are summarized below in Table 1.

⁴ BC Government, 2015. Guidance Document for Determining Ground Water at Risk of Containing Pathogens (GARP), Version 2.

Table 1: Well Construction Details

Well Name	TW18-1
Well Type	Test Well
Completion Date (dd-mmm-yr)	17-Apr-2018
BC Well Identification Number	52145
BC Well Tag #	
Easting ¹	0441282
Northing ¹	5420806
Ground Elevation (masl) 1	213.3
Casing Stick-up (magl)	0.67
Drilling Contractor	Drillwell Enterprises Inc.
Drilling Method	Dual-Rotary
Borehole TD (mbgl)	47.5
Casing Diameter (mm)	203 (ID), 8-inch
Aquifer Formation	SAND and GRAVEL
Aquifer Top (mbgl)	Unconfined (NPWL: 3.35 mbgl)
Aquifer Bottom (mbgl)	22.2
NPWL (mbgl)	3.35
Available Drawdown (m) ²	12.6
Screen Interval and Slot Size	16.3-21.3 m (30-slot)
Screen Type	Stainless Steel Wire Wrap

Notes: 1. coordinates from drillers handheld GPS. 2. For unconfined aquifers, the available drawdown is defined as two-thirds of the saturated thickness of the aquifer. 'masl' means metres above sea level; 'magl' means metres above ground level; 'mbgl' means metres below ground level; 'NPWL' means non-pumping groundwater level; 'mbtoc' means metres below top of casing; 'N/A' means not available.

2.2 Aquifer Testing

A step-rate well performance test was completed at TW18-1 on April 24, 2018 by BC Aquifer Services (BC Aquifer). The step test consisted of four rate-steps of 30 minutes duration run at 163, 272, 359, and 436 m³/d to establish a sustainable pumping rate for the constant rate test and evaluate well loses. The water level response in TW18-1 during the step drawdown test is shown on Figure 4.

A 48-hr constant-rate aquifer test was completed at TW18-1 from April 24-26, 2018 at a rate of 350 m³/d (64 USGPM). The rate was increased by approximately 5.4 m³/d (1 USGPM) 1,200 minutes into the test when BC Aquifer installed their Microscopic Particulate Analysis (MPA) testing equipment. An increase of 5 m³/d is less than a 2% change in the overall rate and not considered to have affected the test in any significant way. Water was discharged approximately 200 m downgradient (south) of the pumping well along the access road.

Figure 5 presents the pumping well water level hydrograph representing the testing period. The pumping rate was sustained for 48 hours, resulting in 7.9 m of drawdown representing approximately 63% of the total available drawdown. An observation well was not available for monitoring during the test. After the pump was shut down, water level recovery was monitored for four days using a pressure transducer and data logger.

During aquifer testing, surface water levels in Banon Creek were monitored. Surface water monitoring results indicate that pumping TW18-1 at a rate of 350 m³/d did not influence water levels

in the creek. Both groundwater and surface water levels were influenced by barometric pressure changes, which were filtered out of the data as best as possible, but still observed slightly in the recovery data.

The Nanaimo Airport climate station indicates 5.2 and 3.4 mm of precipitation fell on April 28 and 29 2018 during the recovery portion of the test (Figure 5). Precipitation did not appear to influence groundwater levels.

2.3 Aquifer Parameter Estimates

The water level data collected during the pumping and recovery intervals was used to assess the aquifer response to pumping, to determine aquifer hydraulic parameters, and to evaluate the presence of hydraulic boundaries in the aquifer.

Analysis of the pumping test data was completed using AQTESOLV, Version 4.50-Professional, Aquifer Test Design and Analysis Computer Software (1996-2007 HydroSOLVE Inc.). This aquifer test solver provides analytical solutions for evaluating hydraulic parameters in confined, unconfined, leaky, or fractured aquifer systems. In this analysis, aquifer test data was analyzed by visual curve matching to determine the "best fit", and in turn, select the most appropriate interpretation to represent aquifer conditions within the upper sand and gravel. Several assumptions are implicit in the hydraulic parameter calculations, and there will invariably be some discrepancy between predicted (i.e., theoretical) and measured drawdown. For instance, the solutions applied assume the aquifer is unconfined, has infinite areal extent, and assume the aquifer is homogeneous, isotropic and of uniform thickness.

Table 2 presents a summary of the estimated aquifer parameter values obtained from the pumping and recovery data. The AQTESOLV plots are provided in Appendix D.

Table 2: Aquifer Parameter Estimates

Calution	Dumming or December Cycle	Time Interval	Transmissivity	Storativity (S)
Solution	Pumping or Recovery Cycle	Analyzed	(m²/d)	-
Moench	Pumping	All	143	-
Neuman	Pumping	All	143	-
Cooper-Jacob	Pumping	Mid	465	-
Cooper-Jacob Agar rec	Recovery	Mid to Late	464	-

Notes: Bold indicates value used for long-term predictive analysis. Storativity values can not be calculated without an observation well.

The transmissivity (T) parameter represents the aquifer's ability to transmit water and can be calculated from the test data. Water level drawdown in TW18-1 occurred very quickly during the step and constant-rate tests (Figure 4 and Figure 5); however, after the initial drawdown water levels stabilized. Therefore, the T of the aquifer was estimated to be relatively high, between 142 to 464 m²/d. The wide range in values is attributed to the lack of an observation well which does not allow for differentiation between well inefficiencies and potential boundary conditions (i.e., recharge from Banon Creek) that could have resulted in a steep initial drawdown followed by stabilization. The T values and stabilization of the drawdown curve suggest that the aquifer may

have a large extent. and the aquifer may be receiving recharge from the creek upgradient of the well location. The data indicates more aggressive well development will likely improve the well efficiency.

No flow boundaries, which are often observed near bedrock valleys or outcrops and evidenced by an increase in drawdown, were not detected in the data set.

The aquifer's hydraulic conductivity (K) is equal to T divided by the saturated thickness (b) of the aquifer. Therefore, the estimated K value for the aquifer, using T (146 to 464 m 2 /d) and b (22.2 m), is 7 to 21 m/d (9 x 10 $^{-5}$ to 2 x 10 $^{-4}$ m/s), the former being representative of a silty to clean sand, with the later being more representative of clean sand with fine-grained gravel.

2.4 Sustainable Well Yield (Q20) Calculation

The Modified Moell method (Q_{20}) developed by van der Kamp and Maathuis (2005) was applied to estimate the long-term sustainable yield of the aquifer. Table 3 summarizes the input parameters. The Q_{20} calculation indicates that TW18-1 could sustain 312 to 367 m³/d (57 to 67 USGPM) of continuous pumping over a 20-year period (24 hours per day, 7 days per week, and 365 days per year). Well development may improve the observed drawdown in the well, which may increase the estimated long-term sustainable yield by improving well efficiency.

Table 3: Q₂₀ Calculation Input Parameters

Parameter	Unit	TW	18-1	
Tested pumping rate (Q)	m³/d	35	50	
Available head (Ha)	m	12.6		
Measured drawdown after 100 minutes (s _{100mins})	m	7.69		
Theoretical drawdown after 100 minutes (s _{100 mins theor})	m	2.1 0.8		
Theoretical drawdown after 20 years (s20yrs theor)	m	4.3 1.5		
Transmissivity	m²/d	143 460		
Estimated Storativity (Specific Yield) ¹	-	0.2 0.2		
Theoretical 20-year sustainable yield (Q ₂₀)	m³/d	312	367	

Notes: 1. Estimated from published values for a sand and gravel aquifer

2.5 Groundwater Quality

Field water quality parameters were recorded from TW18-1 and Banon Creek over the course of the 48-hr constant-rate test (Table E1). Field parameters for both TW18-1 and Banon Creek were relatively stable throughout the pumping test, with the exception of turbidity, which improved from 14 NTU at the start of the test to 0.49 NTU at the end of the test. The specific conductance values measured in the field indicate the groundwater is fresh.

Water quality samples were collected from TW18-1 and Banon Creek near the end of the constantrate test on April 26, 2018. The general, major ion and metal samples were submitted to CARO Analytical Services in Richmond, BC, while the microbiology samples and MPA filter were sent to MB Laboratories Ltd in Sidney, BC. Analytical results were compared to the Canadian Drinking Water Quality Guidelines (2018) to identify potential water quality concerns. The comparison tables are provided as Appendix E (Table E2 to E5). No exceedances were observed, with the exception of pH, which was slightly below the aesthetic objective (AO) of 7.0, and total aluminum in Banon Creek (0.122 mg/L, CDWQG AO is 0.1 mg/L), which is believed to be a reflection of acid preservation of water samples where suspended aluminum silicate clay minerals are present. A piper plot (Figure 6) shows that the major ion concentrations from Banon Creek and TW18-1 plot similarly, indicating a hydraulic connection. Microbiology had no detection of bacteria (IRB, SRB, coliforms or E. coli).

MPA testing did not detect Giardia, Cryptosporidium, Coccidia, Diatoms, Algae, Protozoa, Insects, or Rotifers; however, plant debris was detected and rated to be extremely heavy (1666/100 Gallons). The overall risk rating of surface water contamination provided from the MPA testing was indicated to be of low risk. A copy of the results is included in Appendix E for reference.

2.6 Further Groundwater Exploration

Waterline understands that the predicted diversion volumes from TW18-1 do not meet the CVRD's objectives for the proposed project. However, it may be possible through water management and storage and the addition of more supply wells to meet the objective of the project. Additional drilling and testing would be required to map the extent of the aquifer and explore for additional groundwater.

It is Waterline's understanding that since the time of the Phase 1 study, additional historic reports and data sets have been acquired by the CVRD and new groundwater exploration areas located on CVRD land south of Stocking Lake reservoir have been identified. The new groundwater exploration areas are located north of the mapped Banon Creek alluvial fan but correspond to areas identified as having higher groundwater potential based on results of historical geological mapping and geophysics. Explorative drilling in these areas is currently underway and a summary of this exploration program will be reported under a separate cover.

The western section of the Banon Creek alluvial fan was previously not considered for drilling because of limited site access; however, this area now has access because of recent logging operations in the area. It is possible that the western section of the fan between the north and west Banon Creeks may represent the apex of the alluvial fan deposit. The apex of alluvial fans often contain coarser-grained materials and potentially could have a greater depth to groundwater which would decrease the risk of GARP. However, the nearest seismic lines indicate that the target aquifer may thin to the north and west of TW18-1.

While the seismic results provided an estimate of the lithological thicknesses underlying the site, additional geophysics, such as transient electromagnetic (TEM) or electrical resistivity tomography (ERT) surveys, would help to map and target the coarsest and most permeable water-producing units. Alternatively, a new technique known as Magnetic Resonance Sounding (MRS) or Nuclear Magnetic Resonance (NMR) has recently been used to directly study groundwater reservoirs. MRI/NMR is apparently able to measure the water content and estimate the permeability and depth

of water-bearing units. Although drilling and testing would be required to calibrate the geophysics, geophysics would help to map the extent of the aquifer and target the most prolific units. These methods could be used within the alluvial fan system, or at a new target aquifer location.

Prior to drilling along Banon Creek, an understanding of the environmental flow needs of the creek is required to ensure additional wells would not withdraw a significant portion of base flow rates.

3.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the drilling and testing program, Waterline has reached the following conclusions:

- The aquifer appears to be of moderate transmissivity and no negative boundary conditions were observed at the time of testing.
- Improvement in well efficiency may be possible with a more aggressive screen development (surge block).
- If the CVRD would like to license TW18-1, the provincial government typically requires a pumping test conducted at the low flow period (August to September)⁵. Licensing also typically requires an observation well; the addition of an observation well would also improve certainty of the aquifer assessment and long-term well yield calculations.
- There is potential, through water management and storage and the addition of supplementary supply wells, to meet the objective of the project. Additional drilling and testing would be required to map the extent of the aquifer and explore for additional groundwater.

Based on the findings of the study, Waterline has the following recommendations:

- Redevelop the well using Drillwell's cable tool rig. Drillwell has indicated a half day of development will provide the information to determine whether further development is warranted (i.e., 1 hour per ft of screen).
- Once the well is redeveloped, a second test could be completed on the well during the low-flow period (late summer to early fall). Resampling of the well is recommended at that time to assess seasonal affects.
- In order to properly assess potential hydraulic connection between the well and the creek,
 Waterline recommends installing mini-piezometers in the alluvial deposits adjacent to the
 creek to confirm pressure changes directly in the adjacent aquifer. It may be possible to
 drive steel pipes (drive-point piezometers) directly into the material. The location and
 elevation of the tops of the piezometers and the well head should be surveyed to convert
 the groundwater depths into groundwater elevations.
- Obtain a work plan and cost estimate from a geophysicist to complete a resistivity survey to help map and target the coarser and more-permeable water producing units within the alluvial fan system prior to further exploratory drilling within the alluvial fan system.
- Additional groundwater supply wells may be feasible in the aquifer; however, the environmental flow needs of Banon Creek should be confirmed and compared to the CVRD's water demands.

⁵ BC Government, 2016. Guidance for Technical Assessment Requirements in Support of an Application for Groundwater Use in BC.

4.0 CERTIFICATION

This document was prepared under the direction of a professional geoscientist registered in the Province of British Columbia.

Waterline Resources Inc. trusts that the information provided in this document is sufficient for your requirements. Should you have any questions or concerns, please do not hesitate to contact the undersigned.

Respectfully submitted,

Waterline Resources Inc.

Reviewed by:

Jolene Hermanson, M.Sc., P.Geo Hydrogeologist

Steve Foley, M.Sc., P.Geo. Principal Hydrogeologist

Gage Nordstrom, B.Sc., G.I.T.

Project Scientist

Groundwater Supply Exploration – TW18-1 Drilling and Testing Near Saltair, BC Submitted to the Cowichan Valley Regional District

2768-18-001 September 13, 2018 Page 10

5.0 LIMITATIONS AND USE

The information presented in this document was compiled exclusively for the Cowichan Valley Regional District (the Client) by Waterline Resources Inc. (Waterline). This work was completed in accordance with the scope of work for this project that was agreed between Waterline and the Client. Waterline exercised reasonable skill, care and diligence to assess the information acquired during the preparation of this document, but makes no guarantees or warranties as to the accuracy or completeness of this information. The information contained in this document is based upon, and limited by, the circumstances and conditions acknowledged herein, and upon information available at the time of the preparation of this document. Any information provided by others is believed to be accurate but cannot be guaranteed. No other warranty, expressed or implied, is made as to the professional services provided to the Client.

Any use, reliance on, or decision made, by a third party based on this document is the sole responsibility of said third party. Waterline makes no representation or warranty to any third party with regard to this document and, or the work referred to in this document, and accepts no duty of care to any third party or any liability or responsibility whatsoever for any losses, expenses, damages, fines, penalties or other harm that may be suffered or incurred as a result of the use of, reliance on, any decision made, or any action taken based on, this document or the work referred to in this document.

When Waterline submits instruments of professional service; including, reports, drawings and project-related deliverables, the Client agrees that only original signed and stamped paper versions shall be considered as original documents. The hard copy versions submitted by Waterline to the Client shall be considered as copies of the original documents, and in the event of a dispute or discrepancy, the signed and stamped original documents retained by Waterline shall govern over all copies, electronic or otherwise, provided to the Client.

This document is intended to be used in its entirety, and no individual part of the document may be taken as representative of the findings of the document. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form, by any third party, without the expressed written permission of the Client or Waterline.

6.0 **DEFINITIONS**

AO Aesthetic objective; the term applies to certain substances or characteristics of

drinking water that can affect its acceptance by consumers (taste, odour, colour)

or interfere with practices for supplying good water

b Thickness of the aquifer

CDWQG Canadian Drinking Water Quality Guidelines

CVRD Cowichan Valley Regional District

GARP Groundwater At Risk of Containing Pathogens

Ha Available head IRB Iron related bacteria

K Hydraulic conductivity; a property that describes the ease with which a fluid can

move through pore spaces or fractures

m³/d metres cubed per day
magl metres above ground level
masl metres above sea level
mbgl metres below ground level
mbtoc metres below top of casing

mg/L milligrams per Litre

MPA Microscopic Particulate Analysis
NPWL non-pumping groundwater level

NTU Nephelometric Turbidity Units; a unit measuring the lack of clarity of water

Q Tested pumping rate

Q₂₀ Sustainable well yield calculation; used to estimate the long-term sustainable

yield of the aquifer

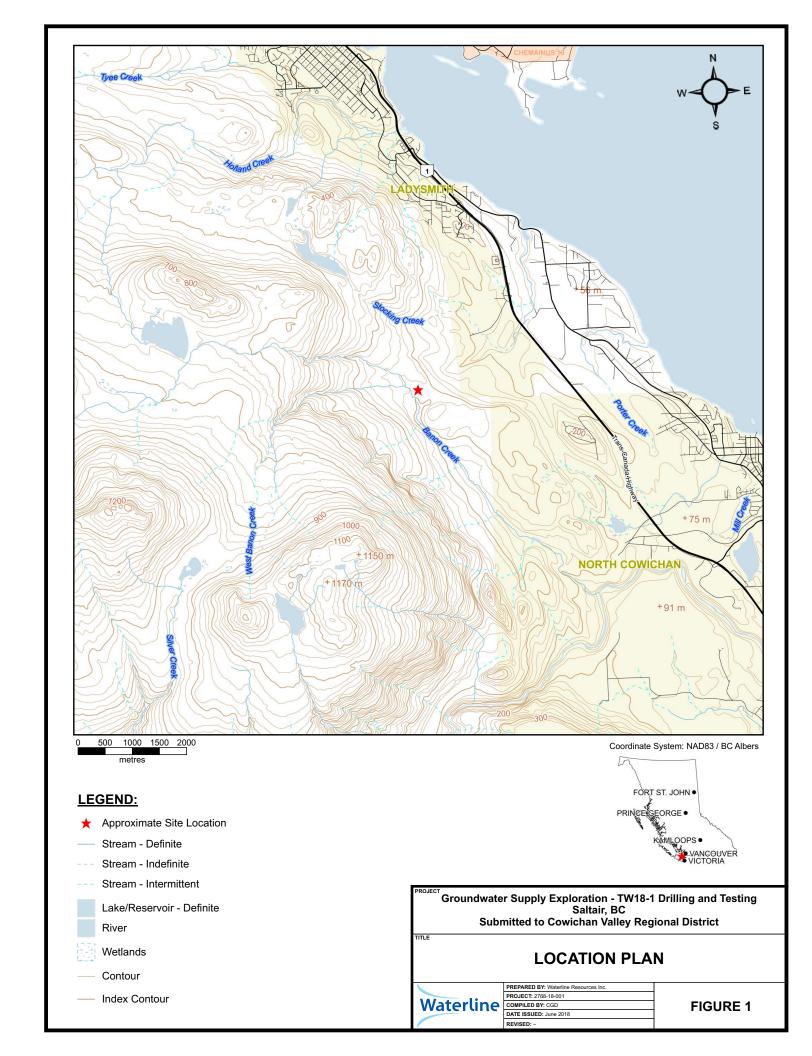
Storativity; the volume of water released from storage per unit decline in

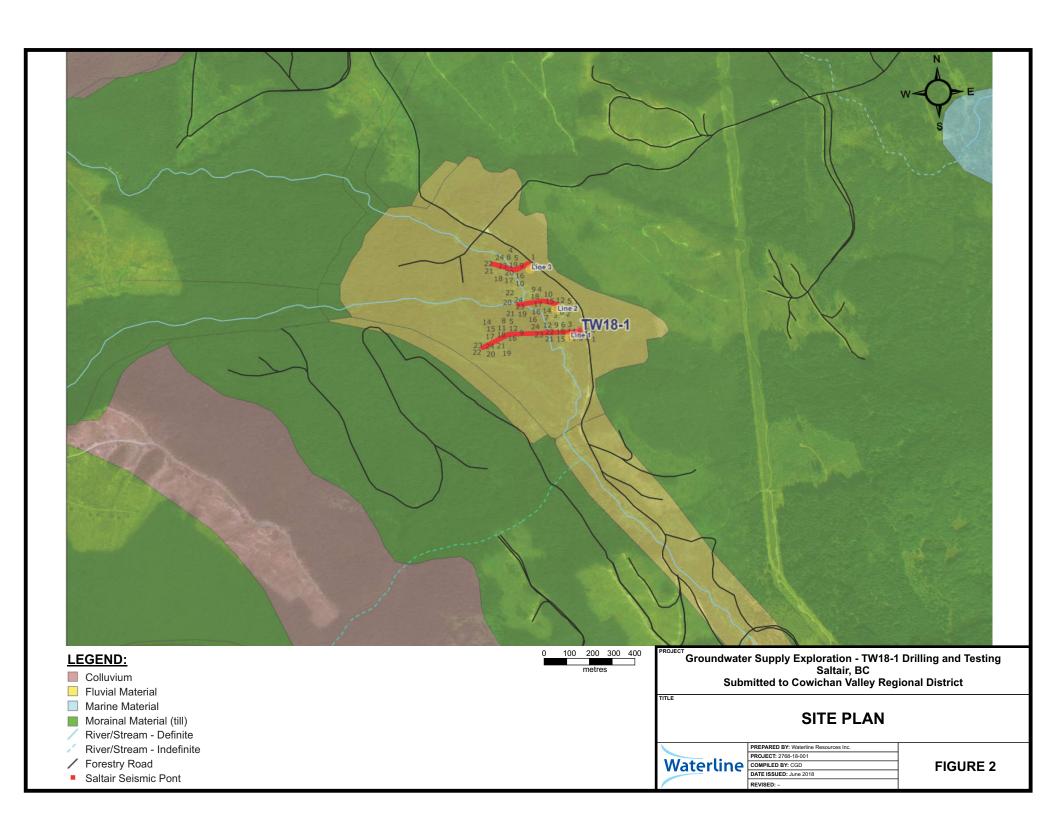
hydraulic head in the aquifer, per unit area of the aquifer

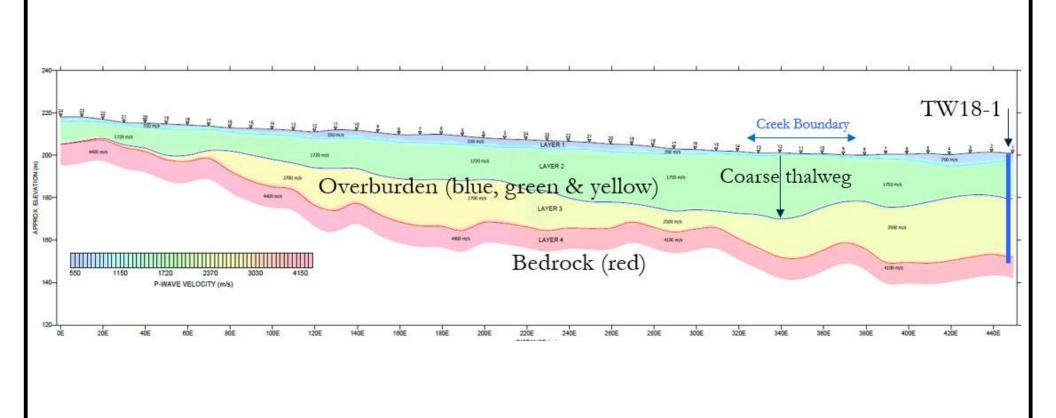
\$100 mins theor
 \$100mins
 \$20yrs theor
 Theoretical drawdown after 100 minutes
 \$20yrs theor
 Theoretical drawdown after 20 years

SRB Sulphate Reducing Bacteria

Transmissivity; the aguifer's ability to transmit water


TAD Total available drawdown


TW Test well


USGPM US Gallons per minute

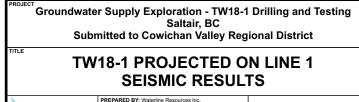
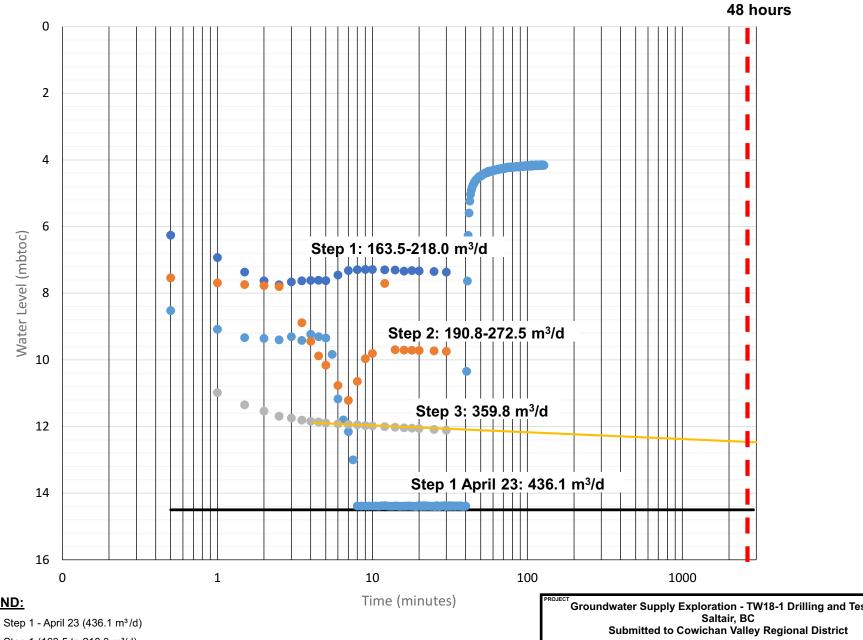

FIGURES

Figure 1	Location Map
Figure 2	Site Plan
Figure 3	TW18-1 Projected on Line 1 Seismic Results
Figure 4	Step-Rate Test Hydrograph
Figure 5	Constant Rate Test Hydrograph
Figure 6	Piper Plot



Waterline
PREDARED BY: Waterline Resources Inc.
PROJECT: 2768-18-001
COMPILED BY: CGD
DATE ISSUED: June 2018
REVISED: -

FIGURE 3

LEGEND:

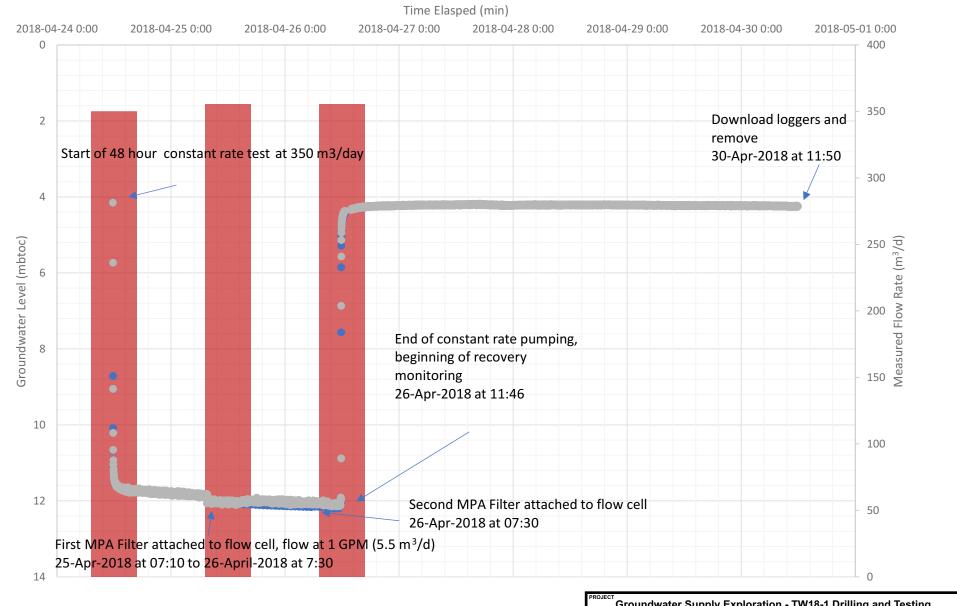
Step 1 (163.5 to 218.0 m³/d)

Step 2 (30 to 50 gpm)

Step 3 (359.8 m³/d)

Top of Pump

Note: 5.5 m³/d = 1 US gallon per minute


Groundwater Supply Exploration - TW18-1 Drilling and Testing Saltair, BC

TITLE

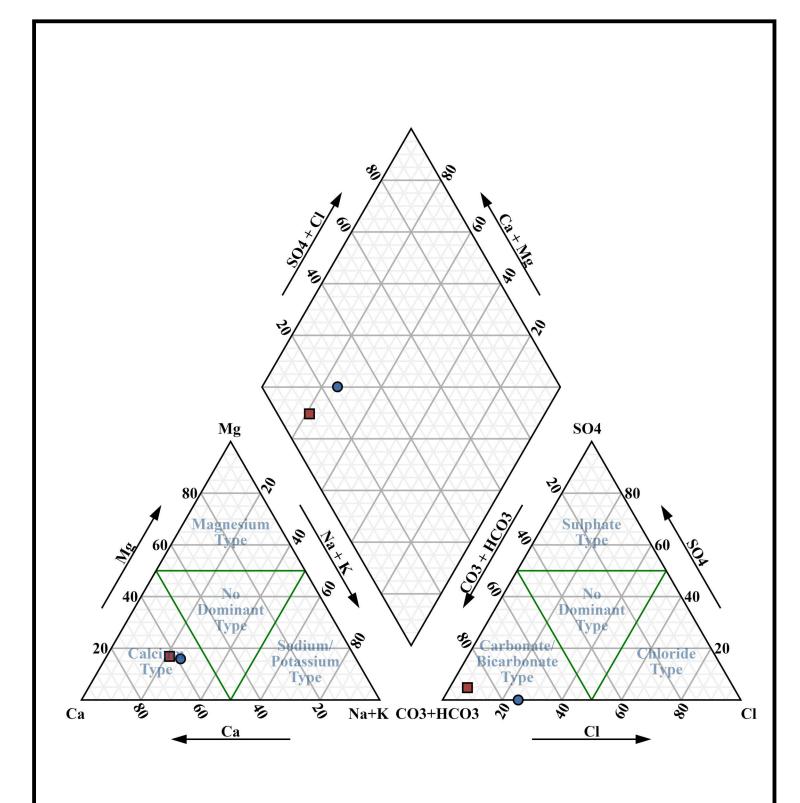
STEP-RATE TEST HYDROGRAPH

-001	
D	FIGURE 4
e 2018	

LEGEND:

- Flow Rate Measurements
- Manual Groundwater Levels
- Pressure Transducer Groundwater Levels

Groundwater Supply Exploration - TW18-1 Drilling and Testing Saltair, BC Submitted to Cowichan Valley Regional District


TITLE

CONSTANT RATE TEST HYDROGRAPH

PREPARED BY: Waterline Resources Inc.
PROJECT: 2768-18-001
COMPILED BY: CGD
DATE ISSUED: June 2018
REVISED: –

FIGURE 5

LEGEND:

Banon Creek

■ TW18-1

Groundwater Supply Exploration - TW18-1 Drilling and Testing Saltair, BC Submitted to Cowichan Valley Regional District

TITLE

PIPER PLOT

PREPARED BY: Waterline Resources Inc.
PROJECT: 2768-18-001
COMPILED BY: CGD
DATE ISSUED: June 2018
REVISED: -

FIGURE 6

Groundwater Supply Exploration – TW18-1 Drilling and Testing Near Saltair, BC Submitted to the Cowichan Valley Regional District

2768-18-001 September 13, 2018

APPENDICES

Appendix A Site Photos

Appendix B TW18-1 Grain Size Analysis

Appendix C TW18-1 Well Log and Drill Record

Appendix D AQTESOLV Plots

Appendix E Water Quality Comparison Tables and Certificates of Analysis

2768-18-001 September 13, 2018

Appendix A: Site Photos

Submitted to the Cowichan Valley Regional District

Photo A1: Site before drilling begins

Photo A2: Drillwell setup on site with D12 Dual Air-Rotary Rig

Photo A3: View of site from road

Photo A4: Drill bit for 8-inch casing

Photo A5: Installing 15' (4.57 m) of 30-slot stainless steel wire wrap screen

Photo A6: BC Aquifer's pump for step test and constant rate test

Photo A7: MPA filter during constant rate test; flow rate 355 m³/d (65.1 USgpm)

Photo A8: Discharge hose 200 m down road from site

Photo A9: Completed well and well cap; ID Plate Number 52145

Appendix B: TW-1 Grain Size Analysis

McElhanney Consulting Services Ltd. 495 Sixth Street Courtenay, BC

SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

TO Waterline Resources Inc. 2430 Jingle Pot Road Nanaimo, BC V9R 6W2

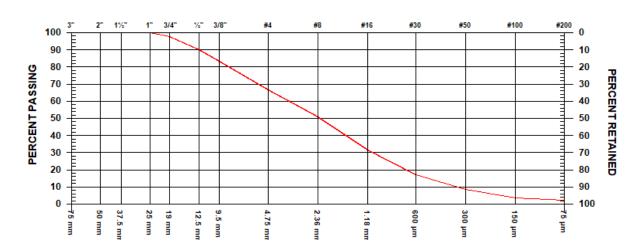
PROJECT NO. 2231-81600-03 CLIENT Waterline Resources Inc. C.C.

PROJECT CVRD Saltair

Groundwater Exploration

CONTRACTOR

DATE RECEIVED 11-Apr-2018 DATE TESTED 12-Apr-2018 DATE SAMPLED 10-Apr-2018 SIEVE TEST NO. 1


TW1 SUPPLIER SOURCE

50 ft

SPECIFICATION

MATERIAL TYPE Sand/Gravel

Client SAMPLED BY B. Hannah TESTED BY TEST METHOD WASHED

GRAVE	L SIZES		PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	50 37.5 25 19 12.5	mm mm mm mm mm mm	100.0 97.9 90.3 83.2	

SAND SIZES AND FINES			ES	PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No. No.	8 16	4.75 2.36 1.18 600 300 150 75		66.9 50.7 31.6 17.0 8.4 3.7 2.1	

MOISTURE CONTENT 10.0%

COMMENTS

Waterline File: 2768-18001

13-Apr-2018

McElhanney Consulting Services Ltd.

Courtenay, BC

SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

TO Waterline Resources Inc. 2430 Jingle Pot Road Nanaimo, BC

PROJECT NO. 2231-81600-03 CLIENT Waterline Resources Inc. C.C.

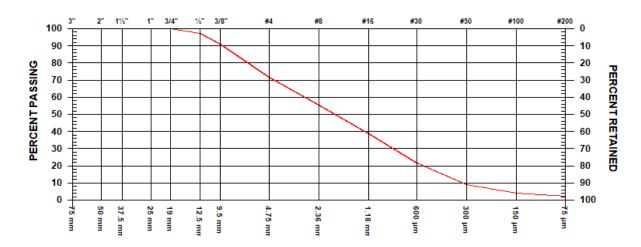
PROJECT CVRD Saltair

6W2

Groundwater Exploration

CONTRACTOR

V9R


DATE RECEIVED 11-Apr-2018 DATE TESTED 12-Apr-2018 DATE SAMPLED 10-Apr-2018 SIEVE TEST NO. 2

TW1 SUPPLIER 55 ft SOURCE

SPECIFICATION

MATERIAL TYPE Sand/Gravel

Client SAMPLED BY B. Hannah TESTED BY TEST METHOD WASHED

GRAVEI	L SIZES		PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm	100.0 97.4 90.9	

SAND SIZES AND FINES			S	PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No. No.	8 16 30	600		71.7 55.5 38.6 21.6 8.8 3.9 2.3	

MOISTURE CONTENT 13.5%

COMMENTS

Waterline File: 2768-18001

13-Apr-2018

McElhanney Consulting Services Ltd.

Courtenay, BC

SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

TO Waterline Resources Inc. 2430 Jingle Pot Road Nanaimo, BC V9R 6W2

PROJECT NO. 2231-81600-03 CLIENT Waterline Resources Inc. C.C.

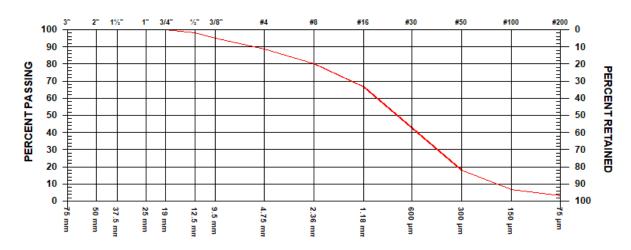
PROJECT CVRD Saltair

Groundwater Exploration

CONTRACTOR

SIEVE TEST NO. 3

DATE RECEIVED 11-Apr-2018 DATE TESTED 12-Apr-2018 DATE SAMPLED 10-Apr-2018


TW1 SUPPLIER SOURCE

60 ft

SPECIFICATION

MATERIAL TYPE Sand/Gravel

Client SAMPLED BY B. Hannah TESTED BY TEST METHOD WASHED

GRAVE	L SIZES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mr 50 mr 37.5 mr 25 mr 19 mr 12.5 mr 9.5 mr	100.0	

SA	SAND SIZES AND FINES			PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No. No.	8 16 30	4.75 2.36 1.18 600 300 150 75		88.9 80.4 66.6 42.6 18.0 6.8 3.3	

MOISTURE CONTENT 14.9%

COMMENTS

Waterline File: 2768-18001

13-Apr-2018

McElhanney Consulting Services Ltd.

Courtenay, BC

SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

TO Waterline Resources Inc. 2430 Jingle Pot Road Nanaimo, BC V9R 6W2

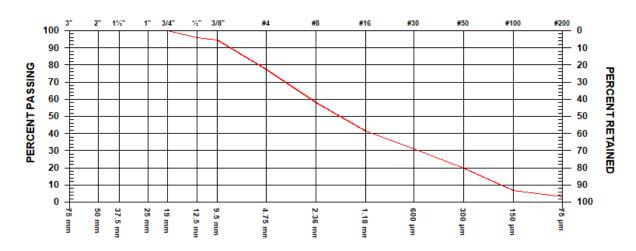
PROJECT NO. 2231-81600-03 CLIENT Waterline Resources Inc. C.C.

PROJECT CVRD Saltair

Groundwater Exploration

CONTRACTOR

DATE RECEIVED 11-Apr-2018 DATE TESTED 12-Apr-2018 DATE SAMPLED 10-Apr-2018 SIEVE TEST NO. 4


TW1 SUPPLIER SOURCE

65 ft

SPECIFICATION

MATERIAL TYPE Sand/Gravel

Client SAMPLED BY B. Hannah TESTED BY TEST METHOD WASHED

GRAVEL	SIZES		PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm	100.0 95.9 94.8	

SA	ND SIZE	ES AND FIN	ES	PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No. No.	8 16 30	4.75 2.36 1.18 600 300 150 75		77.5 58.2 41.4 31.1 19.6 6.9 3.0	

MOISTURE CONTENT 12.2%

COMMENTS

Waterline File: 2768-18001

13-Apr-2018

McElhanney Consulting Services Ltd.

Courtenay, BC

SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

TO Waterline Resources Inc. 2430 Jingle Pot Road Nanaimo, BC V9R 6W2

PROJECT NO. 2231-81600-03 CLIENT Waterline Resources Inc. C.C.

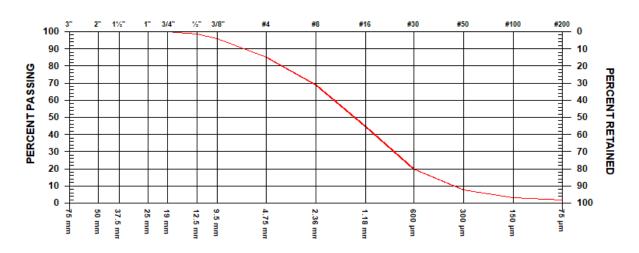
PROJECT CVRD Saltair

Groundwater Exploration

CONTRACTOR

DATE RECEIVED 11-Apr-2018 DATE TESTED 12-Apr-2018 DATE SAMPLED 10-Apr-2018 SIEVE TEST NO. 5

TW1 SUPPLIER SOURCE


70 ft

SPECIFICATION

MATERIAL TYPE Sand/Gravel

Client SAMPLED BY B. Hannah TESTED BY

TEST METHOD WASHED

GRAVEL SIZES			PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm mm mm mm mm	100.0 98.7 96.1	

SA	ND SIZE	S AND FINES	PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No. No.	8 16 30 50 100	4.75 mr 2.36 mr 1.18 mr 600 µr 300 µr 150 µr 75 µr	68.9 44.5 19.8 7.5 13.1	

MOISTURE CONTENT 11.5%

COMMENTS

Waterline File: 2768-18001

13-Apr-2018

McElhanney Consulting Services Ltd.

Courtenay, BC

SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

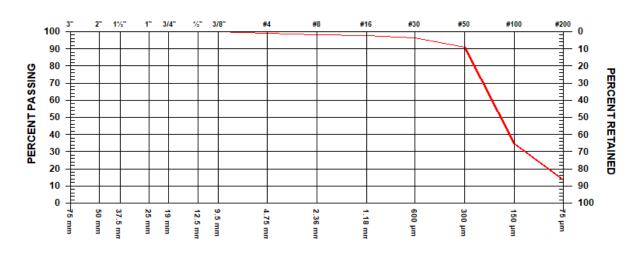
TO Waterline Resources Inc. 2430 Jingle Pot Road Nanaimo, BC V9R 6W2

PROJECT NO. 2231-81600-03 CLIENT Waterline Resources Inc. C.C.

PROJECT CVRD Saltair

Groundwater Exploration

CONTRACTOR


DATE RECEIVED 11-Apr-2018 DATE TESTED 12-Apr-2018 DATE SAMPLED 10-Apr-2018 SIEVE TEST NO. 6

TW1 SUPPLIER 73 ft SOURCE

SPECIFICATION

MATERIAL TYPE Sand

Client SAMPLED BY B. Hannah TESTED BY TEST METHOD WASHED

GRAVEL SIZES			PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm	100.0	

SA	ND SIZE	ES AND FINE	ES	PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No.	8 16 30	4.75 2.36 1.18 600 300 150 75	mm	98.9 98.3 97.6 96.4 91.0 34.6 13.4	

MOISTURE CONTENT 21.0%

COMMENTS

Waterline File: 2768-18001

13-Apr-2018

McElhanney Consulting Services Ltd.

Courtenay, BC

SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

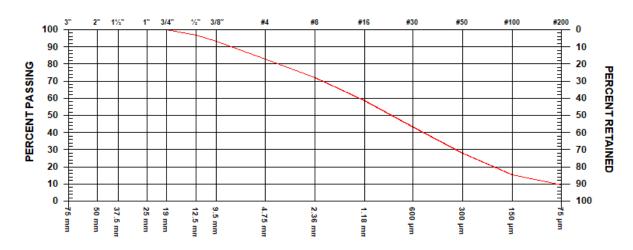
TO Waterline Resources Inc. 2430 Jingle Pot Road Nanaimo, BC V9R 6W2

PROJECT NO. 2231-81600-03 CLIENT Waterline Resources Inc. C.C.

PROJECT CVRD Saltair

Groundwater Exploration

CONTRACTOR


DATE RECEIVED 11-Apr-2018 DATE TESTED 12-Apr-2018 DATE SAMPLED 10-Apr-2018 SIEVE TEST NO. 7

TW1 SUPPLIER 75 ft SOURCE

SPECIFICATION

MATERIAL TYPE Sand/Gravel

Client SAMPLED BY B. Hannah TESTED BY TEST METHOD WASHED

GRAVE	L SIZES		PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm	100.0 96.8 93.1	

	SAND SIZ	ZES AND FINES	PERCENT PASSING	GRADATION LIMITS
No No	. 16 . 30 . 50 . 100		82.9 72.3 58.4 43.2 28.1 15.2 9.3	

MOISTURE CONTENT 11.4%

COMMENTS

Waterline File: 2768-18001

13-Apr-2018

McElhanney Consulting Services Ltd.

Courtenay, BC

SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

TO Waterline Resources Inc. 2430 Jingle Pot Road Nanaimo, BC V9R 6W2

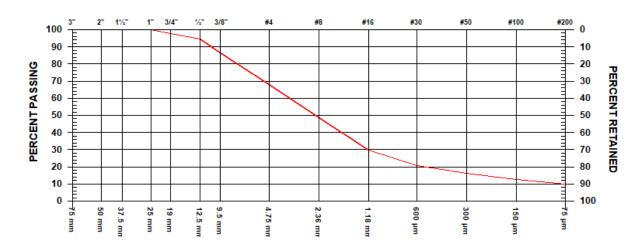
PROJECT NO. 2231-81600-03 CLIENT Waterline Resources Inc. C.C.

PROJECT CVRD Saltair

Groundwater Exploration

CONTRACTOR

DATE RECEIVED 11-Apr-2018 DATE TESTED 12-Apr-2018 DATE SAMPLED 10-Apr-2018 SIEVE TEST NO. 8


TW1 SUPPLIER SOURCE

80 ft

SPECIFICATION

MATERIAL TYPE Sand/Gravel

Client SAMPLED BY B. Hannah TESTED BY TEST METHOD WASHED

GRAVEL SIZES			PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm	100.0 97.6 94.6 86.5	

SAND SIZES AND FINES				PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No. No.	8 16 30	4.75 2.36 1.18 600 300 150 75	mm	67.9 48.6 29.7 20.6 16.0 12.5 9.7	

8.0% MOISTURE CONTENT

COMMENTS

Waterline File: 2768-18001

13-Apr-2018

McElhanney Consulting Services Ltd.

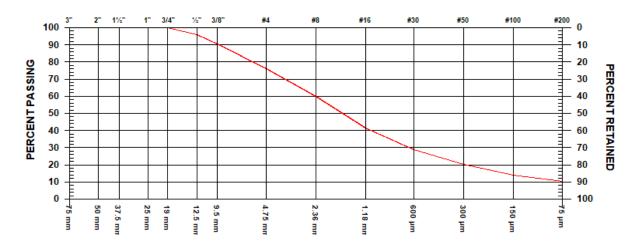
McElhanney Consulting Services Ltd. 495 Sixth Street Courtenay, BC

SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

Waterline Resources Inc. 2430 Jingle Pot Road Nanaimo, BC V9R 6W2

PROJECT NO.2231-81600-03
CLIENT Waterline Resources Inc.
C.C.

PROJECT CVRD Saltair


Groundwater Exploration

CONTRACTOR

SIEVE TEST NO. 9 DATE RECEIVED 11-Apr-2018 DATE TESTED 12-Apr-2018 DATE SAMPLED 10-Apr-2018

SUPPLIER TW1
SOURCE 85 ft
SPECIFICATION
SAMPLED BY Client
TESTED BY B. Hannah
TEST METHOD WASHED

MATERIAL TYPE Sand/Gravel

GRAVE	EL SIZES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 19 mm 12.5 mm 9.5 mm	100.0	

SA	ND SIZES	S AND FINI	ES	PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No. No.	8 16 30 50 100	4.75 2.36 1.18 600 300 150 75	mm	76.0 60.1 41.4 28.6 20.2 14.0 10.3	

MOISTURE CONTENT 9.3%

COMMENTS

Waterline File: 2768-18001

of 1 13-Apr-2018 McElhanney Consulting Services Ltd.

McElhanney Consulting Services Ltd. 495 Sixth Street Courtenay, BC

SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

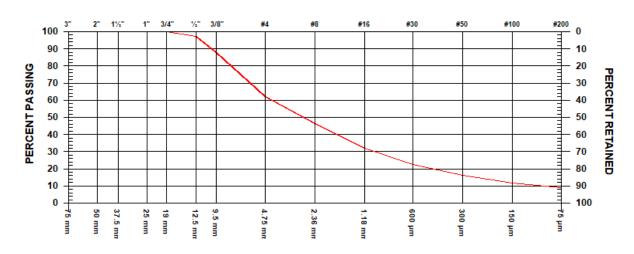
Waterline Resources Inc. 2430 Jingle Pot Road Nanaimo, BC V9R 6W2 PROJECT NO.2231-81600-03
CLIENT Waterline Resources Inc.
C.C.

PROJECT CVRD Saltair

Groundwater Exploration

CONTRACTOR

SIEVE TEST NO. 10 DATE RECEIVED 11-Apr-2018 DATE TESTED 12-Apr-2018 DATE SAMPLED 10-Apr-2018


SUPPLIER TW1 SOURCE 90 f

SOURCE 90 ft SPECIFICATION

MATERIAL TYPE Sand/Gravel

SAMPLED BY Client

TESTED BY B. Hannah TEST METHOD WASHED

GRAVEL SIZES			PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm mm mm mm mm	100.0 97.1 87.7	

SAND SIZES AND FINES				PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No. No.	8 16 30	4.75 2.36 1.18 600 300 150 75	mm	62.3 46.4 31.8 22.4 16.3 11.5 8.8	

MOISTURE CONTENT 7

COMMENTS

Waterline File: 2768-18001

13-Apr-2018

McElhanney Consulting Services Ltd.

McElhanney Consulting Services Ltd. 495 Sixth Street

Courtenay, BC

SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

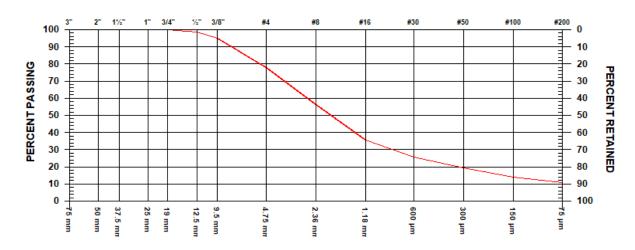
Waterline Resources Inc. 2430 Jingle Pot Road Nanaimo, BC V9R 6W2 PROJECT NO.2231-81600-03
CLIENT Waterline Resources Inc.
C.C.

PROJECT CVRD Saltair

Groundwater Exploration

CONTRACTOR

SIEVE TEST NO. 11 DATE RECEIVED 11-Apr-2018 DATE TESTED 12-Apr-2018 DATE SAMPLED 10-Apr-2018


SUPPLIER TW1
SOURCE 95 ft

SPECIFICATION

MATERIAL TYPE Sand/Gravel

SAMPLED BY Client

TESTED BY B. Hannah
TEST METHOD WASHED

GRAVEL SIZES			PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	50 37.5 25 19 12.5	mm mm mm mm mm mm	100.0 98.6 95.0	

SA	ND SIZE	ES AND FINE	S	PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No. No. No.	8 16 30	4.75 2.36 1.18 600 300 150 75	mm	78.1 56.2 35.8 25.6 19.4 13.9 10.7	

MOISTURE CONTENT 10.0%

COMMENTS

Waterline file: 2768-18001

age 1 of 1 13-Apr-2018

McElhanney Consulting Services Ltd.

McElhanney Consulting Services Ltd. 495 Sixth Street

Courtenay, BC

SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

TO Waterline Resources Inc. 2430 Jingle Pot Road Nanaimo, BC V9R 6W2

PROJECT NO. 2231-81600-03 CLIENT Waterline Resources Inc. C.C.

PROJECT CVRD Saltair

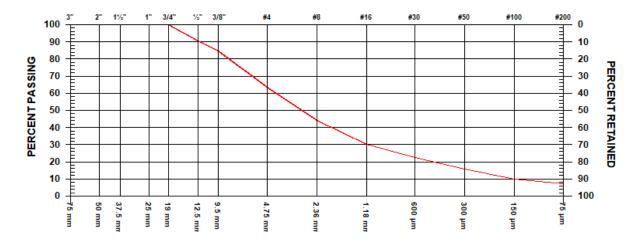
Groundwater Exploration

CONTRACTOR

DATE RECEIVED 11-Apr-2018 DATE TESTED 12-Apr-2018 DATE SAMPLED 10-Apr-2018 SIEVE TEST NO. 12

TW1 SUPPLIER SOURCE

100 ft


SPECIFICATION

MATERIAL TYPE Sand/Gravel

Client SAMPLED BY

B. Hannah TESTED BY

TEST METHOD WASHED

GRAVEL SIZES			PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm	100.0 90.5 84.6	

SAND SIZES	S AND FINES	PERCENT PASSING	GRADATION LIMITS
No. 4 No. 8 No. 16 No. 30 No. 50 No. 100 No. 200	4.75 mm 2.36 mm 1.18 mm 600 µm 300 µm 150 µm 75 µm	63.7 44.0 30.4 22.3 15.7 10.0	

8.7% MOISTURE CONTENT

COMMENTS

Waterline File: 2768-18001

13-Apr-2018

McElhanney Consulting Services Ltd.

McElhanney Consulting Services Ltd. 495 Sixth Street Courtenay, BC

SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

TO Waterline Resources Inc. 2430 Jingle Pot Road Nanaimo, BC V9R 6W2

PROJECT NO. 2231-81600-03 CLIENT Waterline Resources Inc. C.C.

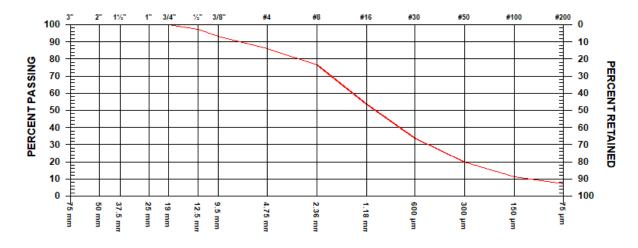
PROJECT CVRD Saltair

Groundwater Exploration

CONTRACTOR

DATE RECEIVED 11-Apr-2018 DATE TESTED 12-Apr-2018 DATE SAMPLED 10-Apr-2018 SIEVE TEST NO. 13

TW1 SUPPLIER 105 ft SOURCE


SPECIFICATION

MATERIAL TYPE Sand/Gravel

Client SAMPLED BY

B. Hannah TESTED BY

TEST METHOD WASHED

GRAVEL SIZES			PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm	100.0 97.2 93.1	

SA	ND SIZE	S AND FINE	S	PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No. No.	8 16 30 50 100	4.75 2.36 1.18 600 300 150 75	mm	86.2 76.7 53.8 33.8 19.7 11.3 7.3	

MOISTURE CONTENT 12.5%

COMMENTS

Waterline File: 2768-18001

13-Apr-2018

McElhanney Consulting Services Ltd.

McElhanney Consulting Services Ltd. 495 Sixth Street

Courtenay, BC

SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

TO Waterline Resources Inc. 2430 Jingle Pot Road Nanaimo, BC V9R 6W2

PROJECT NO. 2231-81600-03 CLIENT Waterline Resources Inc. C.C.

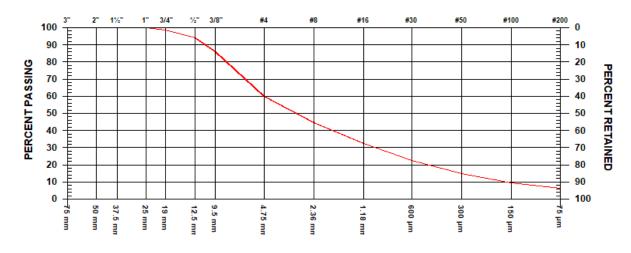
PROJECT CVRD Saltair

Groundwater Exploration

CONTRACTOR

DATE RECEIVED 11-Apr-2018 DATE TESTED 12-Apr-2018 DATE SAMPLED 10-Apr-2018 SIEVE TEST NO. 14

TW1 SUPPLIER 110 ft


SOURCE **SPECIFICATION**

MATERIAL TYPE Sand/Gravel

Client SAMPLED BY

B. Hannah TESTED BY

TEST METHOD WASHED

GRAVEL SIZES			PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm	100.0 98.5 94.1 86.2	

SA	ND SIZE	S AND FINE	S	PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No. No.	8 16 30 50 100	300 150	mm	60.0 44.4 32.3 22.5 14.9 9.4 6.3	

MOISTURE CONTENT

COMMENTS

Waterline File: 2768-18001

13-Apr-2018

McElhanney Consulting Services Ltd.

McElhanney Consulting Services Ltd. 495 Sixth Street Courtenay, BC

SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

TO Waterline Resources Inc. 2430 Jingle Pot Road Nanaimo, BC V9R 6W2

PROJECT NO. 2231-81600-03 CLIENT Waterline Resources Inc. C.C.

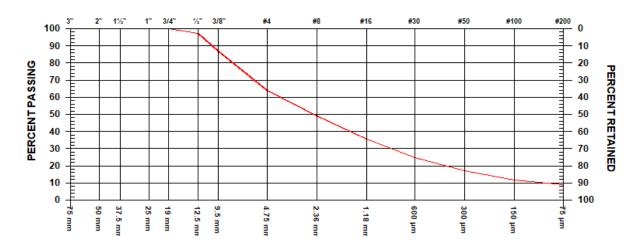
PROJECT CVRD Saltair

Groundwater Exploration

CONTRACTOR

DATE RECEIVED 11-Apr-2018 DATE TESTED 12-Apr-2018 DATE SAMPLED 10-Apr-2018 SIEVE TEST NO. 15

TW1 SUPPLIER SOURCE


115 FT

SPECIFICATION

MATERIAL TYPE Sand/Gravel

Client SAMPLED BY

B. Hannah TESTED BY TEST METHOD WASHED

GRAVEL SIZES			PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	50 37.5 25 19 12.5	mm mm mm mm mm mm	100.0 97.2 87.0	

SA	ND SIZE	S AND FINI	ES	PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No. No.	8 16 30 50 100	4.75 2.36 1.18 600 300 150 75	mm	63.8 49.1 35.5 24.7 17.2 11.8 9.0	

MOISTURE CONTENT

COMMENTS

Waterline File: 2768-18001

13-Apr-2018

McElhanney Consulting Services Ltd.

McElhanney Consulting Services Ltd. 495 Sixth Street Courtenay, BC

SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

Waterline Resources Inc. 2430 Jingle Pot Road Nanaimo, BC V9R 6W2 PROJECT NO.2231-81600-03
CLIENT Waterline Resources Inc.
C.C.

PROJECT CVRD Saltair

Groundwater Exploration

CONTRACTOR

SIEVE TEST NO. 16 DATE RECEIVED 11-Apr-2018 DATE TESTED 12-Apr-2018 DATE SAMPLED 10-Apr-2018

SUPPLIER TW1 SOURCE 120 ft

SPECIFICATION

MATERIAL TYPE Sand/Gravel

SAMPLED BY Client TESTED BY B. Hannah

TESTED BY B. Han
TEST METHOD WASHED

GRAVE	L SIZES		PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm	100.0 97.6 91.2	

SA	ND SIZE	S AND FINES	3	PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No. No.	8 16 30 50	300 j 150 j	nm	76.0 56.8 35.2 23.7 17.1 12.4 9.4	

MOISTURE CONTENT 11.5%

COMMENTS

Waterline File: 2768-18001

1 of 1 13-Apr-2018

McElhanney Consulting Services Ltd.

Groundwater Supply Exploration – TW18-1 Drilling and Testing Near Saltair, BC Submitted to the Cowichan Valley Regional District

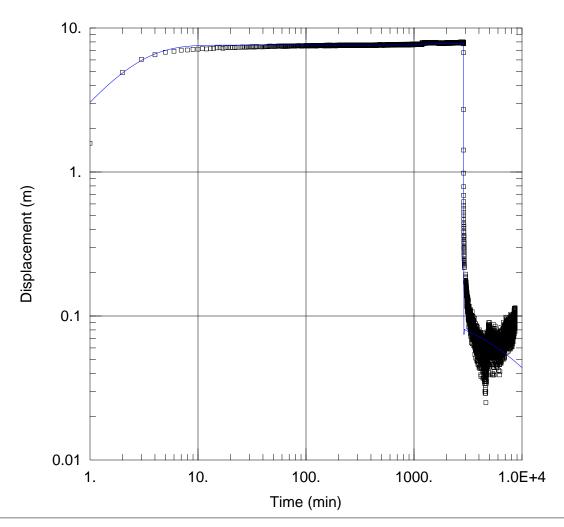
2768-18-001 September 13, 2018

Appendix C: TW-1 Well Log and Drill Record

								BOREHOLE: TW18-1				
INST	ALLED	BY: Drillwell Enterpris	ses		ATS:				SITE: S			
		: DR12 Dual Rotary			EAST: 4412	AST: 441282 NORTH: 5420806				ELEVATIO	N:	213.00 (masl)
	TYPE:	Backfill	Bentonite	N	Grout	Open Hole	Ceme	nt	Sand		Slough	Unknown
SAN	IPLE TY	PE:	Shelby Tube		No Recovery	Split Spoon	Distu	rbed	Dynam	nic Cone	Core	Grab Sample
D	E					<u>K-XI</u>						
e p t h (m)	L E V (masl)			SOII	L TION					INS	WELL TALLATIO	ON
		GRAVEL with silt, bro	wnich hlue su	h angi	ular to angu	ılar hard mois	t (0 to		Stickup: 0	.665 m		
	212	6.1 m)	willsii bide, so	ib aligi	uiai to aligu	nai, naiu, mois	1 (0 10		BC Well ID): 52145		
2									8-inch Ste	el Casing to	16 m	
4	210	sandy GRAVEL with rounded, hard, mo		edium	grained, su	ıb angular to sı	ıb	_	SWL: 3.35	mbgl		
	208	GRAVEL with sand, hard, moist (4.6 m	•	graine	ed, sub angı	ular to sub rou	·		12-inch Be	entonite Surf	face Seal (0 to	5 m)
8	206	SAND and GRAVEL tra angular to sub rou					6.1 mbgl—sub					
2 = = = = = = = = = = = = = = = = = = =	204	silty SAND and GRA	NVEL (9.1 m)									
	202	SAND and GRAVEL	trace silt, Airli	ting 3	0 gpm (10.7	7 m)						
12	200	SAND and GRAVEL, fi rounded, hard, mo			l, greyish blu	ue, sub angular	—12.2 mbgl— to sub					
======================================	198	Airlifting 66 gpm, E	C 30 uS/cm, pl	H 6 (15	5.2 m)			0	K-Packer a Stainless S 21.3m)		.7 to 16.3 m) rap Screens 30	O-slot (16.3 to
18	194	gravelly SAND, fine to loose, moist (18.3		ed, gre	y, sub angul	lar to sub roun	—18.3 mbgl—— ded,	2		30/d40: 17/2		
20	192						—21.3 mbgl—	3		30/d40: 22/4		
22	190	Sand and GRAVEL, fine to coarse grained, greyish blue, sub angular to sub rounded, loose, moist (21.3 to 22.2 m) SAND with silt, fine to medium grained, light brown, loose, wet, water decreasing here, (22.2 to 22.9 m) Silty SAND and GRAVEL, fine to coarse grained, greyish blue, sub angular to sub rounded, hard, wet (22.9 to 38.1 m)					to sub — —22.2 mbgl— ter —22.9 mbgl—		22.2 m, d3	30/d40: 31/4 30/d40: 5/6 30/d40: 13/2		
	<u> </u>								24.4 m, d3	30/d40: 47/6	58	
					TYPE:	: Water Supply	/ Well			COMPLET	ION DEPTH:	16.0 (m)
W	ate	rline			LOGG	SED BY: GN				COMPLET	ION DATE:	April 17/2018
						CHECKED BY: JH				Page 1 of 2	Date printed: 11-Ma	y-2018

									BOREHO	LE:	TW18-1
INSTALLE	D BY: Drillwell Enterp	rises		ATS:					SITE:		Saltair
DRILL TYP	PE: DR12 Dual Rotary			EAST: 4412	82	NORTH: 54	120806		ELEVATIO		213.00 (masl)
FILL TYPE	: Backfill	Bentonite	<u> </u>	Grout	Open Hole	Ceme	ent	Sand		Slough	Unknown
SAMPLE 1	ГҮРЕ:	Shelby Tube	<u> </u>	No Recovery	Split Spoon	Distu	irbed	Dynar	nic Cone	Core	Grab Sample
D E e L p E h V (m) (mas		S DESCI	OII RIP						INS	WELL STALLATION	N
181	6 4 2Boulder, hard (30 0 0		tone	hard (38.1	to 47 5 m)	—38.1 mbgl—		27.4 m, d 29.0 m, d 30.5 m, d 32.0 m, d 33.5 m, d	30/d40: 25/ 30/d40: 41/ 30/d40: 32/ 30/d40: 45/ 30/d40: 40/ 30/d40: 33/ 30/d40: 34/	754 776 729 772	
### 174 ### 177 #### 177 ### 177 ### 177 ### 177 ### 177 ### 177 ### 177 ### 177 ### 177 ### 177 ### 177 ### 1	SHALE Interbedded	END OF H	OLE A	AT 47.5 m							
141				TYPE:	Water Supply	/ Well			COMPLE	TION DEPTH:	16.0 (m)
Wate	erline			LOGG	ED BY: GN				COMPLE	TION DATE:	April 17/2018
				CHEC	KED BY: JH				Page 2 of	2 Date printed: 11-May-2	018

Ministry of Environment DRILLWELL ENTERPRISES LTD. Ministry Well ID Plate Nur 4994 Polikay Pood ☐ Well Closure Report


☐ Well Alteration Report

4994 Polkey Road
Duncan, B.C. V9L 6W3
Phone: 250-746-5268

Willingtry Well in Flate Mulliner.
Ministry Well Tag Number:
Confirmation/alternative specs. attached
Original well construction report attached

Red lettering indicates minimum mandatory information.	See reverse for notes & definitions of abbreviations.
Owner name: CVRD	and the state of t
Mailing address: 175 Ingram Street	Town Duncan Prov. 13 C Postal Code V91 1.
Well Location: Address: Street no. Street name	Town , is en Town ,
or Legal description: LoParcel F Plan 691 D.L.	Block/12/13ec. Twp. Rg. Land District Oyster
or) PID: and Description of well location (attach ske	
off of South Watts Rd, Saltair	
NAD 83: Zone: UTM Easting: 0441282	Latitude (see note 3):
UIM Northing: 5420806	
Method of drilling:	The state of the s
Orientation of well: Vertical horizontal Ground elevation:	
Class of well (see note 5): Water Supply a Sub-class of	
Water supply wells: indicate intended water use: private domestic water supply systems.	stem Irrigation commercial or industrial p-other (specify):
Lithologic description (see notes 7-14) or closure description	Water-bearing
From To Relative Colour Material Description (Use recommend to (bgl)	
O 10/ H I R Her Cit of rio fevreto in religion.	sportie alpeat A Jetan nor room of the secta entropy
the first and the same of control of the same of the s	se + cobbbs
12' 32' Hard Brun Courd, Coasse	
32' 59' wed Hard Bren Crownel, cleary	- Évarse WIS
59' 72' Leose Bren Sand very course	Sene grand WB
72' 74' Loose Bru Sand Sitty for	nes traceof gent WB
74' 101' Hand Gray Grand, Very Si	the hittle water
101' 105' Hard Com Grant Bolder	MATERIAL OF SELECTION OF CHOICE STREET OF THE PROPERTY OF THE
105 1225 Had Guy Grand, Very &	It. 1: ttle to Nowater
Right Company	, Some Sendstone
The state of the s	1. Serie Servicine
- Deda	00 00 or 500 or 500 or
godaya) Gestej ve	F. 15 . A. 1 (2 stu 2) 10 slot)
Casing details Wall	Screen details
From To Dia Casing Material / Open Hole Thickness Drive ft (bgl) ft (bgl) in Shoe	From To Dia Type (see note 18) Slot Size ft (bgl) ft (bgl) in
0 16:5 12" Steel Pulledont	51'6" 53'6" 7" KPacker + Riser -
0 123 8' Steel -322 DR	536" 59' 7" SS. Screen .030"
0 100 0 SPEC 3000 JR	59' 64'6 7" 55 Screen 030"
The state of the s	646" 70' 7" \$5 Serum .030"
Re + 1 be well with all the	
Surface seal: Type: Denterule Depth: 16.5 ft	Intake: Screen Open bottom Uncased hole Screen type: Telescope Pipe size
Method of installation: ✓ Poured ☐ Pumped Thickness: 2 in Backfill: Type: Depth:	Screen material: Stainless steel Plastic Other (specify):
The state of the s	Screen opening: Continuous slot Slotted Perforated pipe
Liner: PVC Other (specify): Thickness: 1 PVC PVC Other (specify): 1	Screen bottom; Bail Plate Other (specify):
From:ft (bgl) To:ft (bgl) Perforated: From:ft (bgl) To:ft (bgl)	Filter pack: From: ft To: ft Thickness: in
	Type and size of material:
Developed by:	Final well completion data:
☑ Air lifting ☐ Surging ☐ Jetting ☐ Pumping ☐ Bailing	Total depth drilled: 156 ft Finished well depth: 70 ft (bgl)
Other (specify): Total duration:	Final stick up: 301 in Depth to bedrock: 122.5 ft (bgl)
Notes:	SWL: 8.5 (ft)btoc) Estimated well yield: 60 + USgpm
Well yield estimated by:	Artesian flow: USgpm, or Artesian pressure: ft
Pumping Ar lifting Bailing Other (specify):	Type of well cap: Well-d Lid Well disinfected: Yes No
Rate: 60+ USgpm Duration: 1.5 hrs	Where well ID plate is attached: Oh well casing Well closure information:
SWL before test: ft (btoc) Pumping water level: ft (btoc)	Reason for closure:
Obvious water quality characteristics: → Salty Clear □ Cloudy □ Sediment □ Gas	Method of closure: ☐ Poured ☐ Pumped
	Sealant material: Backfill material:
Colour/odour: Water sample collected:	Details of closure (see note 17):
Well driller (print clearly): Name (first, last) (see note 19): Scott Rumows	
Registration no. (see note 20): () 04/21407	Date of work (YYYY/MM/DD):
Consultant (if applicable; name and company):	Started: 2018/04/09 Completed: 2018/04/17
DECLARATION: Well construction, well alteration or well closure, as the case may be, has been done in accordance with the requirements in the Water Act and the Ground	Comments:
has been done in accordance with the requirements in the Water Act and the Ground Water Protection Regulation. Signature of Driller Responsible	

Appendix D: AQTESOLV Plots

Data Set: P:\...\Moench.aqt

Date: 06/18/18 Time: 11:35:35

PROJECT INFORMATION

Company: Waterline Resources

Client: CVRD

Project: 2768-18-001 Location: Saltair Test Well: PW

Test Date: April 2018

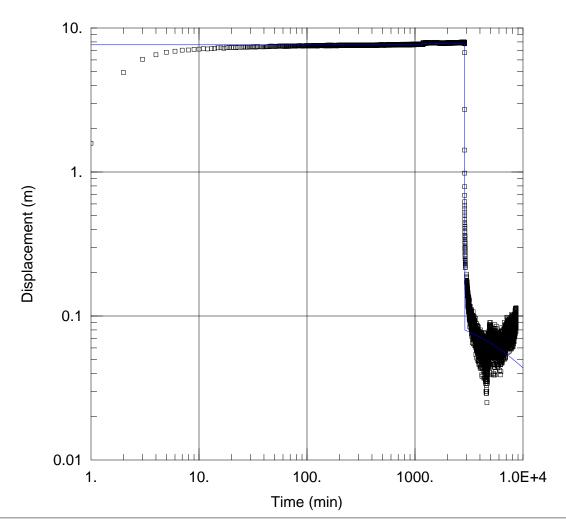
AQUIFER DATA

Saturated Thickness: 18.6 m Anisotropy Ratio (Kz/Kr): 0.07901

WELL DATA

Pumpi	ing Wells		Observa	tion Wells	
Well Name	X (m)	Y (m)	Well Name	X (m)	Y (m)
TW1	0	0	□ TW1	0	0

SOLUTION


Aquifer Model: <u>Unconfined</u>

 $T = \frac{142.6 \text{ m}^2}{0.2044}$

Sy = 0.2044Sw = 0. Solution Method: Moench

S = 1.156E-51S = 1.85E-6

r(w) = 0.09 m

Data Set: P:\...\neuman.aqt

Date: 06/18/18 Time: 11:35:53

PROJECT INFORMATION

Company: Waterline Resources

Client: CVRD

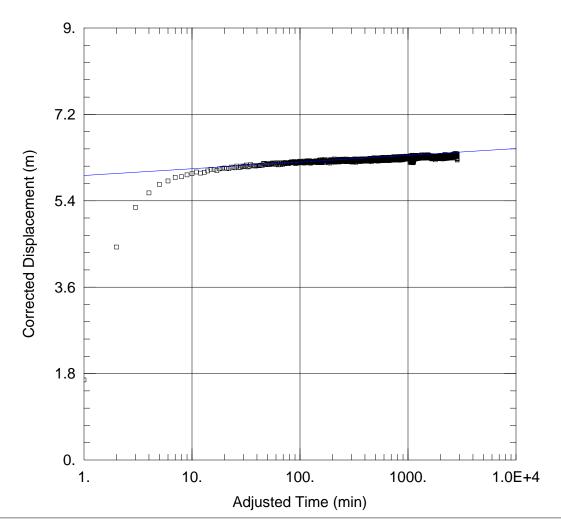
Project: 2768-18-001 Location: Saltair Test Well: PW

Test Date: April 2018

AQUIFER DATA

Saturated Thickness: 18.6 m

WELL DATA


Pump	ing Wells	Observation Wells			
Well Name	X (m)	Y (m)	Well Name	X (m)	
TW1	0	0	□ TW1	0	

SOLUTION

Y (m) 0

Aquifer Model: <u>Unconfined</u> Solution Method: <u>Neuman</u>

 $T = 142.6 \text{ m}^2/\text{day}$ S = 1.156E-51Sy = 0.2044 S = 1.85E-6

Data Set: P:\...\Cooper-Jacob.aqt

Date: 06/18/18 Time: 11:38:48

PROJECT INFORMATION

Company: Waterline Resources

Client: CVRD

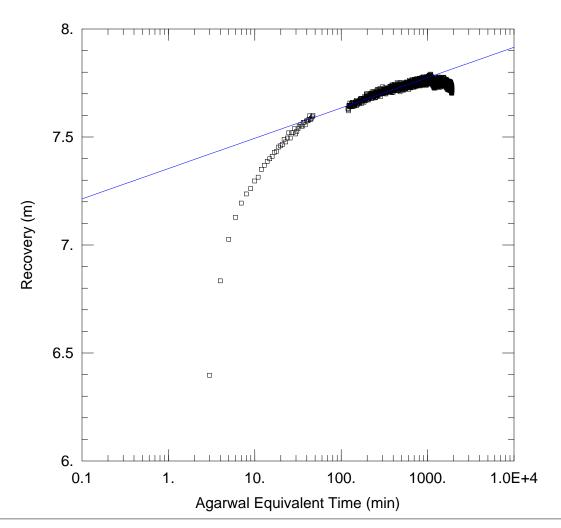
Project: 2768-18-001 Location: Saltair Test Well: PW

Test Date: April 2018

AQUIFER DATA

Saturated Thickness: 18.9 m Anisotropy Ratio (Kz/Kr): 0.5

WELL DATA


Pum	iping vveiis		Observation Wells					
Well Name	X (m)	Y (m)	Well Name	X (m)	Y (m)			
TW1	0	0	□ TW1	0	0			

SOLUTION

Solution Method: Cooper-Jacob

Aquifer Model: Unconfined

 $T = 464.9 \text{ m}^2/\text{day}$ S = 4.395E-41

Data Set: P:\...\Cooper-Jacob (Agar Rec).aqt

Date: 06/18/18 Time: 11:36:29

PROJECT INFORMATION

Company: Waterline Resources

Client: CVRD

Project: 2768-18-001 Location: Saltair Test Well: PW

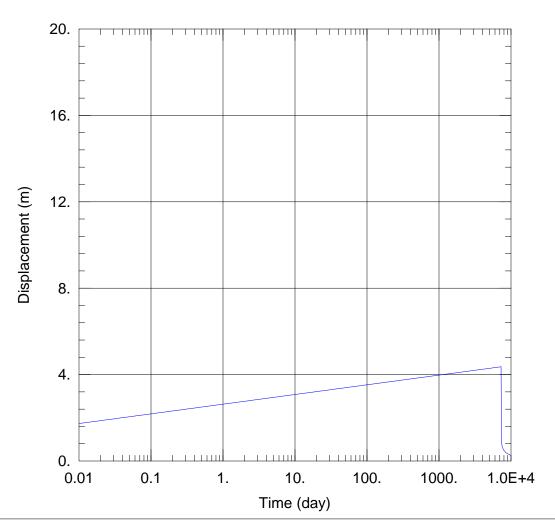
Test Date: April 2018

AQUIFER DATA

Anisotropy Ratio (Kz/Kr): 1. Saturated Thickness: 18.6 m

WELL DATA

Pumpi	ng wells		Observation Wells				
Well Name	X (m)	Y (m)	Well Name	X (m)	Y (m)		
TW1	0	0	□ TW1	0	0		


SOLUTION

Aquifer Model: Unconfined

 $T = 463.9 \text{ m}^2/\text{day}$

S = 3.762E-51

Solution Method: Cooper-Jacob

Data Set: P:\...\forward solution 143m2pd.aqt

Date: 06/18/18 Time: <u>11:40:13</u>

PROJECT INFORMATION

Company: Waterline Resources

Client: CVRD

Project: 2768-18-001 Location: Saltair Test Well: PW

Test Date: April 2018

AQUIFER DATA

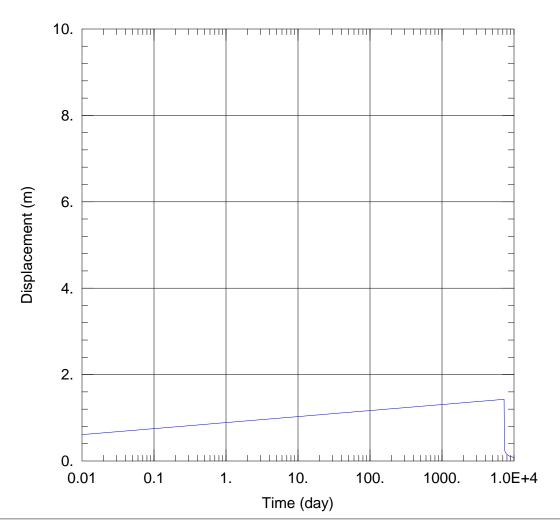
Saturated Thickness: 18.6 m

WELL DATA

Pumping Wells

Observation Wells

Well Name	X (m)	Y (m)	Well Name	X (m)	Y (m)
TW1	0	0	□ TW1	0	0


SOLUTION

Aquifer Model: Unconfined

Solution Method: Neuman

 $T = 143. \text{ m}^2/\text{day}$ $Sy = \overline{0.2}$

S = 0.0001 $\beta = \overline{0.1}$

Data Set: P:\...\forward solution 460m2pd.aqt

Date: 06/18/18 Time: 11:40:33

PROJECT INFORMATION

Company: Waterline Resources

Client: CVRD

Project: 2768-18-001 Location: Saltair Test Well: PW

Test Date: April 2018

AQUIFER DATA

Saturated Thickness: 18.6 m

WELL DATA

Pumpi		
Well Name	X (m)	Y (m)
TW1	0	0

Well Name	X (m)	Y (m)
□ TW1	0	0

Observation Wells

SOLUTION

Aquifer Model: <u>Unconfined</u>

Solution Method: Neuman

 $T = \frac{460}{0.2} \text{ m}^2/\text{day}$ Sy = 0.2

S = 0.0001S = 0.1

Appendix E: Water Quality Comparison Tables and Certificates of Analysis

Table E1. Field Measured Parameters

Table E2. General Chemistry and Major Ions

Table E3. Total Metals

Table E4. Dissolved Metals

Table E5. Microbiology Analysis

MB Labs Certificate of Analysis

CARO Analytical Certificate of Analysis

Table E1. Field Measured Parameters

				Field				
Sample Location	Sample Date	Field Sample ID	Lab ID	Field Conductivity (EC)	Field pH	Field Temperature	Field Total Dissolved Solids	Field Turbidity
			Units	μS/cm	-	ç	ppm	NTU
C	iidelines	GCDWQ AO E	xceedance	-	7-10.5	-	≤500	1
Gu	iideiiiies	GCDWQ MAC Exceedance		-	-	-	-	-
Banon Creek	2018-04-23 09:00	-	-	9	6	4.2	4	-
Banon Creek	2018-04-26 10:45	Surface Water	8042387-02	11	6.7	6.1	5	0.89
TW18-1	2018-04-24 12:00	-	-	45	6.3	9	24	1.28
TW18-1	2018-04-26 11:00	TW18-1	8042387-01	46	6.45	8.8	23	0.49

Notes:

Guidelines - Health Canada, February 2017, Guidelines for Canadian Drinking Water Quality (GCDWQ), Summary Table.

Violet highlight - Value exceeds the Aesthetic Objectives (AO).

Yellow highlight - Value exceeds the Maximum Acceptable Concentration (MAC).

Table E2. General Chemistry & Major Ions

				Gene	eral Che	emistry	1								Major I	ons																		
Sample Location	Sample Date	Field Sample ID	Lab ID	Colour	Alkalinity, Bicarbonate (as CaCO ₃)	Alkalinity, Carbonate (as CaCO ₃)	Alkalinity, Hydroxide (as CaCO ₃)	Alkalinity, Total (as CaCO ₃)	Conductivity (EC)	Нd	Total Dissolved Solids- Calculated	Total Hardness (CaCO ₃)	Total Organic Carbon (TOC)	Turbidity	Ammonia-Total (as N)	Bicarbonate (HCO ₃)	Calcium (Ca)-Dissolved	Carbonate (CO ₃)	Cation - Anion Balance	Fluoride (F)	Hydroxide (OH)	lon Balance	Iron (Fe)-Dissolved	Magnesium (Mg)-Dissolved	Manganese (Mn)-Dissolved	Nitrate-N	Nitrite-N	Organic Nitrogen-Total (as N)	Phenolphthalein	Potassium (K)-Dissolved	Sodium (Na)-Dissolved	Sulphate (SO ₄)	Sulphide	Total Kjeldahl Nitrogen
			Units	TCU	mg/L	mg/L	mg/L	mg/L	μS/cm			mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	% mg	/L mg/	L mg/	_ mg/	L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
G	uidelines	GCDWQ AO E	xceedance	15	-	-	-	-	-	7-10.5	500	-	-	1	-	-	-	-	- 25	- 0	-	-	0.3	-	0.05	-	-	-		-	200	500	0.05	-
	ilucillics	GCDWQ MAC	Exceedance	-	-	-	-	1	-	ı	-	-	-	-	-	-	-	-		1.5	-	-	-	•	-	10	1	-	-	•	-	-	-	-
Banon Creek	2018-04-26 10:45	Surface Water	8042387-02	-	-	-	-	3.2	12.8	6.6	4.21	4.33	-	-	-	3.9	1.36	<2.0	5.4 0.	77 <0.1	10 <2.0	18	0.012	0.223	<0.00020	0.014	< 0.010	-		<0.10	0.67	<1.0	-	-
TW18-1	2018-04-26 11:00	TW18-1	8042387-01	<5.0	23.4	<1.0	<1.0	23.4	49.7	6.98	25	17.2	<0.50	0.17	0.059	28.6	5.4	<0.600	- 1.	11 0.1	1 <0.3	- 0	0.02	0.89	0.00388	0.083	< 0.010	0.067	<1.0	0.28	1.94	1.2	<0.020	0.126

Notes:

Guidelines - Health Canada, February 2017, Guidelines for Canadian Drinking Water Quality (GCDWQ), Summary Table.

Violet highlight - Value exceeds the Aesthetic Objectives (AO).

Yellow highlight - Value exceeds the Maximum Acceptable Concentration (MAC).

Table E3. Total Metals

				Metals																																			
Sample Location	Sample Date	Field Sample ID	Lab ID	Aluminum (Al)-Total	Antimony (Sb)-Total	Arsenic (As)-Total	Barium (Ba)-Total	Beryllium (Be)-Total	Bismuth (Bi)-Total	Boron (B)-Total	Cadmium (Cd)-Total Calcium (Ca)-Total	Chromium (Cr)-Total	Cobalt (Co)-Total	Copper (Cu)-Total	Iron (Fe)-Total	Lead (Pb)-Total	Lithium (Li)-Total	Magnesium (Mg)-Total	Manganese (Mn)-Total	Mercury (Hg)-Total	Molybdenum (Mo)- Total	Nickel (Ni)-Total	Phosphorus (P)-Total	Potassium (K)-Total Selenium (Se)-Total	Silicon (Si)-Total	Silver (Ag)-Total	Sodium (Na)-Total	Strontium (Sr)-Total	Sulphur (S)-Total	Tellurium (Te)-Total	Thallium (Tl)-Total	Thorium (Th)-Total	Tin (Sn)-Total	Titanium (Ti)-Total	Tungsten (W)-Total	Uranium (U)-Total	Vanadium (V)-Total	Zinc (Zn)-Total	Zirconium (Zr)-Total
			Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L n	ng/L mg/	L mg/l	_ mg/L	mg/L	mg/L	mg/L	mg/L	mg/L m	ng/L i	mg/L	mg/L	mg/L	mg/L m	ng/L mg/L	mg/L	mg/L	mg/L	mg/L r	ng/L r	ng/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L r	mg/L	mg/L
_	uidelines	GCDWQ AO Ex	ceedance	0.1	-	-	-	-	-	-		-	-	1	0.3	-	-	- 0	.05	-	-	-	-		-	-	200	-	-	-	-	-	-	-	-	-	-	5	-
9	uidelines	GCDWQ MAC E	xceedance	-	0.006	0.01	1	-	-	5 0	.005 -	0.05	-	-	-	0.01	-	-	- (0.001	-	-	-	- 0.05	-	-	-	-	-	-	-	-	-	-	-	0.02	-	-	-
Banon Creek	2018-04-26 10:45	Surface Water	8042387-02	0.122	<0.00020	<0.00050	<0.0050	<0.00010	<0.00010	0.007 <0.0	000010 1.5	< 0.000	50 <0.00010	0.00069	0.028	<0.00020	<0.00010	0.261 0.0	00063	-	<0.00010	<0.00040	<0.050 <	0.10 <0.000	50 1.5	< 0.000050	0.71	0.0063	<3.0 <0	.00050	<0.000020	<0.00010	0.00029	<0.0050	<0.0010	<0.000020	<0.0010 <0	0.0040 <	<0.00010
TW18-1	2018-04-26 11:00	TW18-1	8042387-01	0.0054	<0.00020	<0.00050	0.0058	<0.00010	<0.00010	0.014 <0.0	000010 5.6	< 0.000	50 <0.00010	0.00044	0.031 -	<0.00020	<0.00010	1.01 0.0	00433 <0.	.000040	0.00013	<0.00040	<0.050	0.27 <0.000	50 5.4	<0.000050	2.08	0.0205	<3.0 <0	.00050	<0.000020	<0.00010	<0.00020	<0.0050	<0.0010	<0.000020	0.0011 0	.0118 <	<0.00010

Notes:
Guidelines - Health Canada, February 2017, Guidelines for Canadian Drinking Water Quality (GCDWQ), Summary Table.

Violet highlight - Value exceeds the Aesthetic Objectives (AO).

Yellow highlight - Value exceeds the Maximum Acceptable Concentration (MAC).

Table E4. Dissolved Metals

				Metals																													
Sample Location	Sample Date	Field Sample ID	Lab ID	Aluminum (Al)-Dissolved	Antimony (Sb)-Dissolved	Arsenic (As)-Dissolved	Barium (Ba)-Dissolved	Beryllium (Be)-Dissolved	Bismuth (Bi)-Dissolved	Boron (B)-Dissolved	Cadmium (Cd)-Dissolved	Chromium (Cr)-Dissolved	Cobalt (Co)-Dissolved	Copper (Cu)-Dissolved	Lead (Pb)-Dissolved	Lithium (Li)-Dissolved	Molybdenum (Mo)- Dissolved	Nickel (Ni)-Dissolved	Phosphorus (P)-Dissolved	Selenium (Se)-Dissolved	Silicon (Si)-Dissolved	Silver (Ag)-Dissolved	Sulphur (S)-Dissolved	Tellurium (Te)-Dissolved	Thallium (TI)-Dissolved	Thorium (Th)-Dissolved	Tin (Sn)-Dissolved	Titanium (Ti)-Dissolved	Tungsten (W)-Dissolved	Uranium (U)-Dissolved	Vanadium (V)-Dissolved	Zinc (Zn)-Dissolved	Zirconium (Zr)-Dissolved
			Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L m	g/L mg	L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
6	uidelines	GCDWQ AO E	xceedance	0.1	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	5	-
L G	uiueiiiies	GCDWQ MAC I	Exceedance	-	0.006	0.01	1	-	-	5	0.005	0.05	-	-	0.01	-	-	-	-	0.05	-	-		-	-	-	-	-	-	0.02	-	-	-
Banon Creek	2018-04-26 10:45	Surface Water	8042387-02	0.0979	<0.00020	<0.00050	<0.0050	<0.00010	<0.00010	0.0093	<0.000010	<0.00050	<0.00010	<0.00040	<0.00020	<0.00010	<0.00010	<0.00040	< 0.050	<0.00050	<1.0 <	0.000050 0.0	061 <3	<0.00050	<0.000020	<0.00010	<0.00020	<0.0050	<0.0010	<0.000020	<0.0010	<0.0040	<0.00010
TW18-1	2018-04-26 11:00	TW18-1	8042387-01	< 0.0050	< 0.00020	< 0.00050	0.0055	<0.00010	<0.00010	0.0164	< 0.000010	< 0.00050	< 0.00010	< 0.00040	< 0.00020	< 0.00010	0.00013	< 0.00040	< 0.050	< 0.00050	5.1 <	0.000050 0.0	204 <3.	<0.00050	<0.000020	< 0.00010	< 0.00020	< 0.0050	< 0.0010	< 0.000020	0.001	0.0074	<0.00010

Notes:
Guidelines - Health Canada, February 2017, Guidelines for Canadian Drinking Water Quality (GCDWQ), Summary Table.

Violet highlight - Value exceeds the Aesthetic Objectives (AO).

Yellow highlight - Value exceeds the Maximum Acceptable Concentration (MAC).

Table E5. Microbiology Analysis

				Micr	obiolo	gical Analysis		
Sample Location	Sample Date	Field Sample ID	Lab ID		Sulphate Reducing Bacteria (SRB)	E. Coli	Fecal Coliform	Total Coliforms
			Units	-	-	MPN/100mL	CFU/100 ml	MPN/100mL
	Guidelines	GCDWQ A	O Exceedance	-	-	•	-	-
	Julucillies	GCDWQ MA	AC Exceedance	-	-	0	0	0
TW18-1	2018-04-26 11:00	TW18-1	8042387-01	ND	ND	0	0	0

Notes:

Guidelines - Health Canada, February 2017, Guidelines for Canadian Drinking Water Quality (GCDWQ), Summary Table.

Violet highlight - Value exceeds the Aesthetic Objectives (AO).

Yellow highlight - Value exceeds the Maximum Acceptable Concentration (MAC).

Client/Code

Waterline Resources Inc. 2430 Jinale Pot Rd Maniamo, BC V9R 6W2

Date 27Apr18 11:17a Source FWS

No. W139835

TEL: 250-585-9114

CommentArrival temp.: 12.00

jhermanson@waterlineresources.com Sampler: GN

Type of Sample water

No. of Samples

Sample: Saltair

			CFU/1	00 ml	CFU/1	00 ml	CFU/100 mL
Site Code	Date	Time_	TC	T-NC	FC	F-NC	<u>E.coli</u>
TW18-1	26Apr18	11:15a	0	0	0	O	0

WATER DISTRICT SCREEN

			lactose	Colif	orms		Total	Sulfur Reducing	j/	
<u>Sample</u>	Date	Time	<u>Fermentors</u>	Total	Fecal	E.coli	Aeromonas	Iron Bacteria	<u>Yeast/Funqi</u>	TPCX
TW18-1	26Apr18	11:15a	ND	ND	MD	MD	ND	ND / ND	ND / ND	0.92

* all counts are colony forming units per milli-litre

TC = total coliform bacteria

FC = fecal coliform bacteria (aka Thermotolerant Coliforms)

NC = non-coliform bacteria

ND = none detected

TPC = total plate count- spread plate method - 35C/48hr TGEA

FDA/BAM 8th ed, 1995 + Revision A, 1998, May 2009

CFU = colony forming units

Results may be adversely affected if samples are submitted to the laboratory more than 24 to 30 hours after collection.

E. coli = Escherichia coli, FDA/BAM 8th ed. 1995 + Revision A. 1998 Bergy's Manual of Systematic Bacteriology vol 1, AOAC 1984; J.Clin.Micro., J.Intern.Systm.Bact.

> M. Milholm Microbiologist

W. Riggs Sr Microbi 6 Lagist

TEL: (250) 656-1334 EMAIL: info@mblabs.com

Client/Code

Waterline Resources Inc. 2430 Jingle Pot Rd Maniamo, BC V9R 6W2

Date 27Apr18 11:24a

No. W139836

Source FWS

Type of Sample filter(s)

No. of Samples

TEL: 250-585-9114

Comments Arrival temp.: 12.00

jhermanson@waterlineresources.com CC:gnordstrom@waterlineresources.com

Sample: TW18-1 26Apr18 07:30a 07:30am - 11:30am

MICROSCOPIC PARTICULATE ANALYSIS *

Processing Information:

Laboratory Examination

Date & Time of Sample:

03Sep02 13:15p

Total volume filtered 240 gal Filter sediment collected 3.2mL Vol. sucrose sediment 0.85 mL

Vol. float. pellet/100gal 0.25 mL

Microscopy: phase contrast DIC + fluorescence

Type of Material Examined: original sediment

all floatation pellets

		Table #1	Table #2
Indicator Elements	Count/100 gal	Range Rating**	Relative Risk***
Giardia	ND	MS	0
Cryptosporidium	ND	NS	O
Coccidia	ND	NS	0
Diatoms	ND	NS	O
Algae (chlorophyll +)	ND	NS	0
Protozoa (chlorophyll -)	ND	n/a	n/a
Insects (or parts)	ND	NS	()
Rotifers	ND	NG.	0
Plant Debris	1666	E 1-1	3

ND = none detected

EH = extremely heavy

n/a = not applicable

H = heavyM = moderate

R = rare

NS = not significant

Risk of surface water contamination: $(3 = \le 9) = LOW RISK$

* method used: US EPA Consensus Method for Determing Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate Analysis (MPA), Vasconcelos, J., S. Harris., 1992

** Table 1 Numerical range of each primary bio-indicator per 100 gal

*** Table 2 Relative surface water risk factors associated with scoring of prihary bio-indicators

> M. Milholm Phycologist

Sr. Microbiologist

TEL: (250) 656-1334 EMAIL: info@mblabs.com

CERTIFICATE OF ANALYSIS

REPORTED TO Waterline Resources Inc. - Nanaimo

2430 Jingle Pot Road Nanaimo, BC V9R 6W2

ATTENTION Jolene Hermanson WORK ORDER 8042387

 PO NUMBER
 2768-18-001
 RECEIVED / TEMP
 2018-04-27 09:25 / 12°C

 PROJECT
 2768-18-001
 REPORTED
 2018-05-14 14:40

 PROJECT INFO
 CVRD Saltair TW

Introduction:

CARO Analytical Services is a testing laboratory full of smart, engaged scientists driven to make the world a safer and healthier place. Through our clients' projects we become an essential element for a better world. We employ methods conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts. CARO is accredited by the Canadian Association for Laboratories Accreditation (CALA) to ISO 17025:2005 for specific tests listed in the scope of accreditation approved by CALA.

Big Picture Sidekicks

We've Got Chemistry

Ahead of the Curve

You know that the sample you collected after snowshoeing to site, digging 5 meters, and racing to get it on a plane so you can submit it to the lab for time sensitive results needed to make important and expensive decisions (whew) is VERY important. We know that too.

It's simple. We figure the more you enjoy working with our fun and engaged team members; the more likely you are to give us continued opportunities to support you.

Through research, regulation knowledge, and instrumentation, we are your analytical centre for the technical knowledge you need, BEFORE you need it, so you can stay up to date and in the know.

Work Order Comments:

This is a revised report; please refer to Appendix 3 for details.

If you have any questions or concerns, please contact me at hmaleki@caro.ca

Authorized By:

Helen Maleki, Dipl T Client Service Representative the

1-888-311-8846 | www.caro.ca

#110 4011 Viking Way Richmond, BC V6V 2K9 | #102 3677 Highway 97N Kelowna, BC V1X 5C3 | 17225 109 Avenue Edmonton, AB T5S 1H7

REPORTED TO	Waterline Resources Inc Nanaimo	WORK ORDER	8042387
PROJECT	2768-18-001	REPORTED	2018-05-14 14:40

Result	Guideline	RL	Units	Analyzed	Qualifi
mpled: 2018-04-2	6 10:30				
1.11	AO ≤ 250	0.10	mg/L	2018-04-29	
0.11	MAC = 1.5	0.10	mg/L	2018-04-29	
0.083	MAC = 10			2018-04-29	
< 0.010	MAC = 1	0.010	mg/L	2018-04-29	
1.2	AO ≤ 500	1.0	mg/L	2018-04-29	
23.4	N/A	1.0	ma/l	2018-05-01	
-					
				N/A	
	· · · · · · · · · · · · · · · · · · ·				
49.7	N/A			2018-05-01	
			-		
6.98	7.0-10.5			2018-05-02	HT2
< 0.020	AO ≤ 0.05		•	2018-05-02	
0.17	OG < 1			2018-04-29	
17 2	None Required	0.500	ma/l	N/A	
	· · · · · · · · · · · · · · · · · · ·				
23	7.0 = 000	10		20.0 00 04	
< 0.0050	NI/A	0.0050	ma/l	2018 04 30	
~ 0.00010	1 N/ /*\	0.00010	my/L	2010-04-30	
• • • • • • • • • • • • • • • • • • • •	1.11 0.11 0.083 < 0.010 1.2 23.4 < 1.0 23.4 < 1.0 < 1.0 28.6 < 0.600 < 0.340 0.059 < 0.50 < 5.0 49.7 0.126 6.98 < 0.020	0.11 MAC = 1.5 0.083 MAC = 10 < 0.010	1.11 AO ≤ 250 0.10 0.11 MAC = 1.5 0.10 0.083 MAC = 10 0.010 < 0.010 MAC = 1 0.010 1.2 AO ≤ 500 1.0 23.4 N/A 1.0 < 1.0 N/A 1.0 23.4 N/A 1.0 < 1.0 N/A 1.0 28.6 N/A 1.22 < 0.600 N/A 0.600 < 0.340 N/A 0.340 0.059 None Required 0.020 < 0.50 N/A 0.50 < 5.0 AO ≤ 15 5.0 49.7 N/A 2.0 0.126 N/A 0.050 6.98 7.0-10.5 0.10 < 0.020 AO ≤ 0.05 0.020 0.17 OG < 1 0.10 17.2 None Required 0.500 -0.3 N/A -5.0 0.0670 N/A 0.0500 < 0.0050 N/A 0.0500 < 0.0050 N/A 0.0050 < 0.0055 N/A 0.0050 < 0.00050 N/A 0.00000 < 0.00060 N/A 0.00000 < 0.00060 N/A 0.000000 < 0.0064 N/A 0.000010 < 0.00010 N/A 0.000010 < 0.00050 N/A 0.000000 < 0.00050 N/A 0.000000 < 0.00050 N/A 0.00050	1.11 AO ≤ 250 0.10 mg/L 0.11 MAC = 1.5 0.10 mg/L 0.083 MAC = 10 0.010 mg/L < 0.010 MAC = 1 0.010 mg/L 1.2 AO ≤ 500 1.0 mg/L 23.4 N/A 1.0 mg/L < 1.0 N/A 1.0 mg/L < 0.600 mg/L < 0.510 N/A 0.600 mg/L < 0.340 N/A 0.340 mg/L < 0.059 None Required 0.020 mg/L < 0.50 N/A 0.50 mg/L < 5.0 AO ≤ 15 5.0 CU 49.7 N/A 2.0 μS/cm 0.126 N/A 0.050 mg/L < 0.020 AO ≤ 0.05 0.020 mg/L < 0.020 AO ≤ 0.05 0.020 mg/L < 0.07 OG < 1 0.10 NTU 17.2 None Required 0.500 mg/L -0.3 N/A -5.0 - 0.0670 N/A 0.0500 mg/L < 0.0050 N/A 0.0500 mg/L < 0.0050 N/A 0.0050 mg/L < 0.0050 N/A 0.0050 mg/L < 0.00050 N/A 0.0050 mg/L < 0.00050 N/A 0.0050 mg/L < 0.00050 N/A 0.00050 mg/L < 0.00050 N/A 0.00050 mg/L < 0.00010 N/A 0.00010 mg/L < 0.00050 N/A 0.000010 mg/L < 0.00050 N/A 0.000010 mg/L < 0.00050 N/A 0.000010 mg/L < 0.00050 N/A 0.00050 mg/L	1.11

REPORTED TO Waterline Resources Inc. - Nanaimo

PROJECT 2768-18-001

WORK ORDER 8042387 **REPORTED** 2018-05-14 14:40

Analyte	Result	Guideline	RL	Units	Analyzed	Qualifie
ГW18-1 (8042387-01) Matrix: Wate	r Sampled: 2018-04-20	3 10:30, Continued	I			
Dissolved Metals, Continued						
Iron, dissolved	0.020	N/A	0.010	mg/L	2018-04-30	
Lead, dissolved	< 0.00020	N/A	0.00020	mg/L	2018-04-30	
Lithium, dissolved	< 0.00010	N/A	0.00010	mg/L	2018-04-30	
Magnesium, dissolved	0.890	N/A	0.010	mg/L	2018-04-30	
Manganese, dissolved	0.00388	N/A	0.00020	mg/L	2018-04-30	
Molybdenum, dissolved	0.00013	N/A	0.00010	mg/L	2018-04-30	
Nickel, dissolved	< 0.00040	N/A	0.00040	mg/L	2018-04-30	
Phosphorus, dissolved	< 0.050	N/A	0.050	mg/L	2018-04-30	
Potassium, dissolved	0.28	N/A	0.10	mg/L	2018-04-30	
Selenium, dissolved	< 0.00050	N/A	0.00050	mg/L	2018-04-30	
Silicon, dissolved	5.1	N/A	1.0	mg/L	2018-04-30	
Silver, dissolved	< 0.000050	N/A	0.000050	mg/L	2018-04-30	
Sodium, dissolved	1.94	N/A	0.10	mg/L	2018-04-30	
Strontium, dissolved	0.0204	N/A	0.0010	mg/L	2018-04-30	
Sulfur, dissolved	< 3.0	N/A	3.0	mg/L	2018-04-30	
Tellurium, dissolved	< 0.00050	N/A	0.00050	mg/L	2018-04-30	
Thallium, dissolved	< 0.000020	N/A	0.000020	mg/L	2018-04-30	
Thorium, dissolved	< 0.00010	N/A	0.00010	mg/L	2018-04-30	
Tin, dissolved	< 0.00020	N/A	0.00020	mg/L	2018-04-30	
Titanium, dissolved	< 0.0050	N/A	0.0050	mg/L	2018-04-30	
Tungsten, dissolved	< 0.0010	N/A	0.0010	mg/L	2018-04-30	
Uranium, dissolved	< 0.000020	N/A	0.000020	mg/L	2018-04-30	
Vanadium, dissolved	0.0010	N/A	0.0010	mg/L	2018-04-30	
Zinc, dissolved	0.0074	N/A	0.0040	mg/L	2018-04-30	
Zirconium, dissolved	< 0.00010	N/A	0.00010	mg/L	2018-04-30	
Total Metals						
Aluminum, total	0.0054	OG < 0.1	0.0050	mg/L	2018-05-03	
Antimony, total	< 0.00020	MAC = 0.006	0.00020	mg/L	2018-05-03	
Arsenic, total	< 0.00050	MAC = 0.01	0.00050	mg/L	2018-05-03	
Barium, total	0.0058	MAC = 1	0.0050	mg/L	2018-05-03	
Beryllium, total	< 0.00010	N/A	0.00010	mg/L	2018-05-03	
Bismuth, total	< 0.00010	N/A	0.00010	mg/L	2018-05-03	
Boron, total	0.0140	MAC = 5	0.0050	mg/L	2018-05-03	
Cadmium, total	< 0.000010	MAC = 0.005	0.000010	mg/L	2018-05-03	
Calcium, total	5.68	None Required	0.20	mg/L	2018-05-03	
Chromium, total	< 0.00050	MAC = 0.05	0.00050	mg/L	2018-05-03	
Cobalt, total	< 0.00010	N/A	0.00010	mg/L	2018-05-03	
Copper, total	0.00044	AO ≤ 1	0.00040	mg/L	2018-05-03	
Iron, total	0.031	AO ≤ 0.3	0.010	mg/L	2018-05-03	
Lead, total	< 0.00020	MAC = 0.01	0.00020	mg/L	2018-05-03	
Lithium, total	< 0.00010	N/A	0.00010		2018-05-03	
Magnesium, total	1.01	None Required	0.010	mg/L	2018-05-03	

REPORTED TO	Waterline Resources Inc Nanaimo	WORK ORDER	8042387
PROJECT	2768-18-001	REPORTED	2018-05-14 14:40

Analyte	Result	Guideline	RL	Units	Analyzed	Qualif
W18-1 (8042387-01) Matrix: Wate	er Sampled: 2018-04-20	6 10:30, Continued				
Total Metals, Continued						
Manganese, total	0.00433	AO ≤ 0.05	0.00020	mg/L	2018-05-03	
Mercury, total	< 0.000040	MAC = 0.001	0.000040	mg/L	2018-05-03	
Molybdenum, total	0.00013	N/A	0.00010	mg/L	2018-05-03	
Nickel, total	< 0.00040	N/A	0.00040	mg/L	2018-05-03	
Phosphorus, total	< 0.050	N/A	0.050	mg/L	2018-05-03	
Potassium, total	0.27	N/A	0.10	mg/L	2018-05-03	
Selenium, total	< 0.00050	MAC = 0.05	0.00050	mg/L	2018-05-03	
Silicon, total	5.4	N/A	1.0	mg/L	2018-05-03	
Silver, total	< 0.000050	None Required	0.000050	mg/L	2018-05-03	
Sodium, total	2.08	AO ≤ 200	0.10	mg/L	2018-05-03	
Strontium, total	0.0205	N/A	0.0010	mg/L	2018-05-03	
Sulfur, total	< 3.0	N/A	3.0	mg/L	2018-05-03	
Tellurium, total	< 0.00050	N/A	0.00050	mg/L	2018-05-03	
Thallium, total	< 0.000020	N/A	0.000020	mg/L	2018-05-03	
Thorium, total	< 0.00010	N/A	0.00010	mg/L	2018-05-03	
Tin, total	< 0.00020	N/A	0.00020		2018-05-03	
Titanium, total	< 0.0050	N/A	0.0050		2018-05-03	
Tungsten, total	< 0.0010	N/A	0.0010		2018-05-03	
Uranium, total	< 0.000020	MAC = 0.02	0.000020		2018-05-03	
Vanadium, total	0.0011	N/A	0.0010		2018-05-03	
variaulurii, lolai						
· · · · · · · · · · · · · · · · · · ·		AO ≤ 5		mg/L	2018-05-03	
Zinc, total Zirconium, total	0.0118 < 0.00010	AO ≤ 5 N/A	0.0040 0.00010		2018-05-03 2018-05-03	
Zinc, total Zirconium, total Surface Water (8042387-02) Matrix	0.0118 < 0.00010	AO ≤ 5 N/A	0.0040			
Zinc, total Zirconium, total Surface Water (8042387-02) Matrix	0.0118 < 0.00010	AO ≤ 5 N/A	0.0040 0.00010			
Zinc, total Zirconium, total Surface Water (8042387-02) Matrix	0.0118 < 0.00010 x: Water Sampled: 201	AO ≤ 5 N/A 8-04-26 10:45	0.0040 0.00010 0.10	mg/L	2018-05-03	
Zinc, total Zirconium, total Surface Water (8042387-02) Matrix Anions Chloride	0.0118 < 0.00010 x: Water Sampled: 201 0.77	AO ≤ 5 N/A 8-04-26 10:45 AO ≤ 250	0.0040 0.00010 0.10	mg/L mg/L mg/L	2018-05-03	
Zinc, total Zirconium, total Surface Water (8042387-02) Matrix Anions Chloride Fluoride Nitrate (as N)	0.0118 < 0.00010 x: Water Sampled: 201 0.77 < 0.10	AO ≤ 5 N/A 8-04-26 10:45 AO ≤ 250 MAC = 1.5	0.0040 0.00010 0.10 0.10 0.010	mg/L mg/L mg/L mg/L	2018-05-03 2018-04-29 2018-04-29	
Zinc, total Zirconium, total Surface Water (8042387-02) Matrix Anions Chloride Fluoride	0.0118 < 0.00010 x: Water Sampled: 201 0.77 < 0.10 0.014	AO ≤ 5 N/A 8-04-26 10:45 AO ≤ 250 MAC = 1.5 MAC = 10	0.0040 0.00010 0.10 0.10 0.010 0.010	mg/L mg/L mg/L mg/L	2018-05-03 2018-04-29 2018-04-29 2018-04-29	
Zinc, total Zirconium, total Surface Water (8042387-02) Matrix Anions Chloride Fluoride Nitrate (as N) Nitrite (as N)	0.0118 < 0.00010 x: Water Sampled: 201 0.77 < 0.10 0.014 < 0.010	AO ≤ 5 N/A 8-04-26 10:45 AO ≤ 250 MAC = 1.5 MAC = 10 MAC = 1	0.0040 0.00010 0.10 0.10 0.010 0.010	mg/L mg/L mg/L mg/L mg/L	2018-05-03 2018-04-29 2018-04-29 2018-04-29 2018-04-29	
Zinc, total Zirconium, total Surface Water (8042387-02) Matrix Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters	0.0118 < 0.00010 x: Water Sampled: 201 0.77 < 0.10 0.014 < 0.010	AO ≤ 5 N/A 8-04-26 10:45 AO ≤ 250 MAC = 1.5 MAC = 10 MAC = 1 AO ≤ 500	0.0040 0.00010 0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L mg/L	2018-05-03 2018-04-29 2018-04-29 2018-04-29 2018-04-29	
Zinc, total Zirconium, total Surface Water (8042387-02) Matrix Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCO3)	0.0118 < 0.00010 x: Water Sampled: 201 0.77 < 0.10 0.014 < 0.010 < 1.0	AO ≤ 5 N/A 8-04-26 10:45 AO ≤ 250 MAC = 1.5 MAC = 10 MAC = 1	0.0040 0.00010 0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L mg/L	2018-05-03 2018-04-29 2018-04-29 2018-04-29 2018-04-29 2018-04-29	
Zinc, total Zirconium, total Surface Water (8042387-02) Matrix Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCO3) Bicarbonate (HCO3)	0.0118 < 0.00010 x: Water Sampled: 201 0.77 < 0.10 0.014 < 0.010 < 1.0	AO ≤ 5 N/A 8-04-26 10:45 AO ≤ 250 MAC = 1.5 MAC = 10 MAC = 1 AO ≤ 500 N/A N/A	0.0040 0.00010 0.10 0.10 0.010 0.010 1.0 2.0 2.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2018-05-03 2018-04-29 2018-04-29 2018-04-29 2018-04-29 2018-05-04	
Zinc, total Zirconium, total Surface Water (8042387-02) Matrix Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3)	0.0118 < 0.00010 x: Water Sampled: 201 0.77 < 0.10 0.014 < 0.010 < 1.0 3.2 3.9	AO ≤ 5 N/A 8-04-26 10:45 AO ≤ 250 MAC = 1.5 MAC = 10 MAC = 1 AO ≤ 500 N/A N/A N/A	0.0040 0.00010 0.10 0.10 0.010 0.010 1.0 2.0 2.0 2.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2018-05-03 2018-04-29 2018-04-29 2018-04-29 2018-04-29 2018-05-04 2018-05-04	
Zinc, total Zirconium, total Surface Water (8042387-02) Matrix Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Seneral Parameters Alkalinity, Total (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH)	0.0118 < 0.00010 x: Water Sampled: 201 0.77 < 0.10 0.014 < 0.010 < 1.0 3.2 3.9 < 2.0 < 2.0	AO ≤ 5 N/A 8-04-26 10:45 AO ≤ 250 MAC = 1.5 MAC = 10 MAC = 1 AO ≤ 500 N/A N/A N/A N/A N/A	0.0040 0.00010 0.10 0.010 0.010 1.0 2.0 2.0 2.0 2.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2018-05-03 2018-04-29 2018-04-29 2018-04-29 2018-04-29 2018-05-04 2018-05-04 2018-05-04 2018-05-04	
Zinc, total Zirconium, total Surface Water (8042387-02) Matrix Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Seneral Parameters Alkalinity, Total (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Conductivity (EC)	0.0118 < 0.00010 x: Water Sampled: 201 0.77 < 0.10 0.014 < 0.010 < 1.0 3.2 3.9 < 2.0 < 2.0 12.8	AO ≤ 5 N/A 8-04-26 10:45 AO ≤ 250 MAC = 1.5 MAC = 10 MAC = 1 AO ≤ 500 N/A N/A N/A	0.0040 0.00010 0.10 0.10 0.010 1.0 2.0 2.0 2.0 2.0 2.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2018-05-03 2018-04-29 2018-04-29 2018-04-29 2018-04-29 2018-05-04 2018-05-04 2018-05-04 2018-05-04 2018-05-04	НТ
Zinc, total Zirconium, total Surface Water (8042387-02) Matrix Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Seneral Parameters Alkalinity, Total (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH)	0.0118 < 0.00010 x: Water Sampled: 201 0.77 < 0.10 0.014 < 0.010 < 1.0 3.2 3.9 < 2.0 < 2.0	AO ≤ 5 N/A 8-04-26 10:45 AO ≤ 250 MAC = 1.5 MAC = 10 MAC = 1 AO ≤ 500 N/A N/A N/A N/A N/A N/A N/A	0.0040 0.00010 0.10 0.10 0.010 1.0 2.0 2.0 2.0 2.0 2.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2018-05-03 2018-04-29 2018-04-29 2018-04-29 2018-04-29 2018-05-04 2018-05-04 2018-05-04 2018-05-04	нт
Zinc, total Zirconium, total Surface Water (8042387-02) Matrix Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Seneral Parameters Alkalinity, Total (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Conductivity (EC) pH	0.0118 < 0.00010 x: Water Sampled: 201 0.77 < 0.10 0.014 < 0.010 < 1.0 3.2 3.9 < 2.0 < 2.0 12.8	AO ≤ 5 N/A 8-04-26 10:45 AO ≤ 250 MAC = 1.5 MAC = 10 MAC = 1 AO ≤ 500 N/A N/A N/A N/A N/A N/A N/A	0.0040 0.00010 0.10 0.10 0.010 1.0 2.0 2.0 2.0 2.0 2.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2018-05-03 2018-04-29 2018-04-29 2018-04-29 2018-04-29 2018-05-04 2018-05-04 2018-05-04 2018-05-04 2018-05-04	HT2

REPORTED TO Waterline Resources Inc. - Nanaimo

PROJECT 2768-18-001

WORK ORDER REPORTED 8042387 2018-05-14 14:40

Analyte	Result	Guideline	RL	Units	Analyzed	Qualifie
Surface Water (8042387-02) Matrix: \	Water Sampled: 2018	3-04-26 10:45, Coi	ntinued			
Calculated Parameters, Continued						
Solids, Total Dissolved	< 10	AO ≤ 500	10	mg/L	2018-05-04	
Dissolved Metals						
Aluminum, dissolved	0.0979	N/A	0.0050	ma/L	2018-04-30	
Antimony, dissolved	< 0.00020	N/A	0.00020		2018-04-30	
Arsenic, dissolved	< 0.00050	N/A	0.00050		2018-04-30	
Barium, dissolved	< 0.0050	N/A	0.0050		2018-04-30	
Beryllium, dissolved	< 0.00010	N/A	0.00010		2018-04-30	
Bismuth, dissolved	< 0.00010	N/A	0.00010		2018-04-30	
Boron, dissolved	0.0093	N/A	0.0050		2018-04-30	
Cadmium, dissolved	< 0.000010	N/A	0.000010		2018-04-30	
Calcium, dissolved	1.36	N/A	0.20	mg/L	2018-04-30	
Chromium, dissolved	< 0.00050	N/A	0.00050		2018-04-30	
Cobalt, dissolved	< 0.00010	N/A	0.00010		2018-04-30	
Copper, dissolved	< 0.00040	N/A	0.00040		2018-04-30	
Iron, dissolved	0.012	N/A	0.010		2018-04-30	
Lead, dissolved	< 0.00020	N/A	0.00020		2018-04-30	
Lithium, dissolved	< 0.00010	N/A	0.00010		2018-04-30	
Magnesium, dissolved	0.223	N/A	0.010		2018-04-30	
Manganese, dissolved	< 0.00020	N/A	0.00020		2018-04-30	
Molybdenum, dissolved	< 0.00010	N/A	0.00010		2018-04-30	
Nickel, dissolved	< 0.00040	N/A	0.00040		2018-04-30	
Phosphorus, dissolved	< 0.050	N/A	0.050	mg/L	2018-04-30	
Potassium, dissolved	< 0.10	N/A	0.10	mg/L	2018-04-30	
Selenium, dissolved	< 0.00050	N/A	0.00050	mg/L	2018-04-30	
Silicon, dissolved	< 1.0	N/A	1.0		2018-04-30	
Silver, dissolved	< 0.000050	N/A	0.000050	mg/L	2018-04-30	
Sodium, dissolved	0.67	N/A	0.10	mg/L	2018-04-30	
Strontium, dissolved	0.0061	N/A	0.0010		2018-04-30	
Sulfur, dissolved	< 3.0	N/A	3.0	mg/L	2018-04-30	
Tellurium, dissolved	< 0.00050	N/A	0.00050	mg/L	2018-04-30	
Thallium, dissolved	< 0.000020	N/A	0.000020	mg/L	2018-04-30	
Thorium, dissolved	< 0.00010	N/A	0.00010	mg/L	2018-04-30	
Tin, dissolved	< 0.00020	N/A	0.00020	mg/L	2018-04-30	
Titanium, dissolved	< 0.0050	N/A	0.0050	mg/L	2018-04-30	
Tungsten, dissolved	< 0.0010	N/A	0.0010	mg/L	2018-04-30	
Uranium, dissolved	< 0.000020	N/A	0.000020		2018-04-30	
Vanadium, dissolved	< 0.0010	N/A	0.0010		2018-04-30	
Zinc, dissolved	< 0.0040	N/A	0.0040		2018-04-30	
Zirconium, dissolved	< 0.00010	N/A	0.00010		2018-04-30	
Fotal Metals				-		
Aluminum, total	0.122	OG < 0.1	0.0050	ma/l	2018-05-03	

REPORTED TO Waterline Resources Inc. - Nanaimo

PROJECT 2768-18-001

WORK ORDER REPORTED

8042387 2018-05-14 14:40

Analyte	Result	Guideline	RL Units	Analyzed	Qualifier
Analyto	rtoourt	Garacinio	IXE Office	Analyzou	Qualifici

Surface Water (8042387-02) | Matrix: Water | Sampled: 2018-04-26 10:45. Continued

otal Metals, Continued					
Antimony, total	< 0.00020	MAC = 0.006	0.00020	mg/L	2018-05-03
Arsenic, total	< 0.00050	MAC = 0.01	0.00050	mg/L	2018-05-03
Barium, total	< 0.0050	MAC = 1	0.0050	mg/L	2018-05-03
Beryllium, total	< 0.00010	N/A	0.00010	mg/L	2018-05-03
Bismuth, total	< 0.00010	N/A	0.00010	mg/L	2018-05-03
Boron, total	0.0070	MAC = 5	0.0050	mg/L	2018-05-03
Cadmium, total	< 0.000010	MAC = 0.005	0.000010	mg/L	2018-05-03
Calcium, total	1.52	None Required	0.20	mg/L	2018-05-03
Chromium, total	< 0.00050	MAC = 0.05	0.00050	mg/L	2018-05-03
Cobalt, total	< 0.00010	N/A	0.00010	mg/L	2018-05-03
Copper, total	0.00069	AO ≤ 1	0.00040	mg/L	2018-05-03
Iron, total	0.028	AO ≤ 0.3	0.010	mg/L	2018-05-03
Lead, total	< 0.00020	MAC = 0.01	0.00020	mg/L	2018-05-03
Lithium, total	< 0.00010	N/A	0.00010	mg/L	2018-05-03
Magnesium, total	0.261	None Required	0.010	mg/L	2018-05-03
Manganese, total	0.00063	AO ≤ 0.05	0.00020	mg/L	2018-05-03
Molybdenum, total	< 0.00010	N/A	0.00010	mg/L	2018-05-03
Nickel, total	< 0.00040	N/A	0.00040	mg/L	2018-05-03
Phosphorus, total	< 0.050	N/A	0.050	mg/L	2018-05-03
Potassium, total	< 0.10	N/A	0.10	mg/L	2018-05-03
Selenium, total	< 0.00050	MAC = 0.05	0.00050	mg/L	2018-05-03
Silicon, total	1.5	N/A	1.0	mg/L	2018-05-03
Silver, total	< 0.000050	None Required	0.000050	mg/L	2018-05-03
Sodium, total	0.71	AO ≤ 200	0.10	mg/L	2018-05-03
Strontium, total	0.0063	N/A	0.0010	mg/L	2018-05-03
Sulfur, total	< 3.0	N/A	3.0	mg/L	2018-05-03
Tellurium, total	< 0.00050	N/A	0.00050	mg/L	2018-05-03
Thallium, total	< 0.000020	N/A	0.000020	mg/L	2018-05-03
Thorium, total	< 0.00010	N/A	0.00010	mg/L	2018-05-03
Tin, total	0.00029	N/A	0.00020	mg/L	2018-05-03
Titanium, total	< 0.0050	N/A	0.0050	mg/L	2018-05-03
Tungsten, total	< 0.0010	N/A	0.0010	mg/L	2018-05-03
Uranium, total	< 0.000020	MAC = 0.02	0.000020	mg/L	2018-05-03
Vanadium, total	< 0.0010	N/A	0.0010	mg/L	2018-05-03
Zinc, total	< 0.0040	AO ≤ 5	0.0040	mg/L	2018-05-03
Zirconium, total	< 0.00010	N/A	0.00010	mg/L	2018-05-03

Sample Qualifiers:

HT1 The sample was prepared and/or analyzed past the recommended holding time.

HT2 The 15 minute recommended holding time (from sampling to analysis) has been exceeded - field analysis is recommended.

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO Waterline Resources Inc. - Nanaimo

PROJECT 2768-18-001

WORK ORDER

8042387

REPORTED 2018-05-14 14:40

Analysis Description	Method Ref.	Technique	Location
Alkalinity in Water	SM 2320 B* (2011)	Titration with H2SO4	Edmonton
Ammonia, Total in Water	SM 4500-NH3 G* (2011)	Automated Colorimetry (Phenate)	Kelowna
Anions in Water	SM 4110 B (2011)	Ion Chromatography	Kelowna
Carbon, Total Organic in Water	SM 5310 B (2011)	Combustion, Infrared CO2 Detection	Kelowna
Cation-Anion Balance in Water	SM 1030 E (2011)	Calculation: 100 x ([Cations]-[Anions])/([Cations]+[Anions])	N/A
Colour, True in Water	SM 2120 C (2011)	Spectrophotometry (456 nm)	Kelowna
Conductivity in Water	SM 2510 B (2011)	Conductivity Meter	Kelowna
Dissolved Metals in Water	EPA 200.8 / EPA 6020B	0.45 µm Filtration / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)	Richmond
Hardness in Water	SM 2340 B (2011)	Calculation: 2.497 [diss Ca] + 4.118 [diss Mg]	N/A
Ion Balance in Water	SM 1030 E (2011)	Calculation: 100 x ([Cations]-[Anions])/([Cations]+[Anions])	N/A
Langelier Index in Water	SM 2330 B (2010)	Calculation	N/A
Nitrogen, Total Kjeldahl in Water	SM 4500-Norg D* (2011)	Block Digestion and Flow Injection Analysis	Kelowna
pH in Water	SM 4500-H+ B (2011)	Electrometry	Kelowna
Solids, Total Dissolved in Water	SM 1030 E (2011)	Calculation: 100 x ([Cations]-[Anions])/([Cations]+[Anions])	N/A
Sulfide, Total in Water	SM 4500-S2 D* (2011)	Colorimetry (Methylene Blue)	Edmonton
Total Metals in Water	EPA 200.2* / EPA 6020B	HNO3+HCl Hot Block Digestion / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)	Richmond
Turbidity in Water	SM 2130 B (2011)	Nephelometry	Kelowna

Note: An asterisk in the Method Reference indicates that the CARO method has been modified from the reference method

Glossary of Terms:

RL Reporting Limit (default)

% Percent

Less than the specified Reporting Limit (RL) - the actual RL may be higher than the default RL due to various factors

AO Aesthetic Objective

CU Colour Units (referenced against a platinum cobalt standard)

MAC Maximum Acceptable Concentration (health based)

mg/L Milligrams per litre

NTU Nephelometric Turbidity Units OG Operational Guideline (treated water) pH units pH < 7 = acidic, ph > 7 = basic $\mu S/cm$ Microsiemens per centimetre

EPA United States Environmental Protection Agency Test Methods

SM Standard Methods for the Examination of Water and Wastewater, American Public Health Association

Guidelines Referenced in this Report:

Guidelines for Canadian Drinking Water Quality (Health Canada, Feb 2017)

Note: In some cases, the values displayed on the report represent the lowest guideline and are to be verified by the end user

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO Waterline Resources Inc. - Nanaimo

PROJECT 2768-18-001

WORK ORDER

8042387

REPORTED 2018-05-14 14:40

General Comments:

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

REPORTED TO Waterline Resources Inc. - Nanaimo

PROJECT 2768-18-001

WORK ORDER REPORTED

8042387 2018-05-14 14:40

....

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): A blank sample that undergoes sample processing identical to that carried out for the test samples. Method blank results are used to assess contamination from the laboratory environment and reagents.
- Duplicate (Dup): An additional or second portion of a randomly selected sample in the analytical run carried through the entire
 analytical process. Duplicates provide a measure of the analytical method's precision (reproducibility).
- Blank Spike (BS): A sample of known concentration which undergoes processing identical to that carried out for test samples,
 also referred to as a laboratory control sample (LCS). Blank spikes provide a measure of the analytical method's accuracy.
- Matrix Spike (MS): A second aliquot of sample is fortified with with a known concentration of target analytes and carried through the entire analytical process. Matrix spikes evaluate potential matrix effects that may affect the analyte recovery.
- Reference Material (SRM): A homogenous material of similar matrix to the samples, certified for the parameter(s) listed.
 Reference Materials ensure that the analytical process is adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10-20 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifie
Anions, Batch B8D2121									
Blank (B8D2121-BLK1)			Prepared	I: 2018-05-0	01, Analyze	ed: 2018-0)5-01		
Chloride	< 0.10	0.10 mg/L							
Fluoride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Sulfate	< 1.0	1.0 mg/L							
LCS (B8D2121-BS1)			Prepared	I: 2018-05-0	01, Analyze	ed: 2018-0)5-01		
Chloride	16.2	0.10 mg/L	16.0		101	90-110			
Fluoride	4.09	0.10 mg/L	4.00		102	88-108			
Nitrate (as N)	3.93	0.010 mg/L	4.00		98	93-108			
Nitrite (as N)	2.05	0.010 mg/L	2.00		102	85-114			
Sulfate	16.1	1.0 mg/L	16.0		101	91-109			
Duplicate (B8D2121-DUP1)	Sou	rce: 8042387-02	Prepared	I: 2018-05-0)1, Analyze	ed: 2018-0	5-01		
Chloride	0.76	0.10 mg/L		0.77			1	10	
Fluoride	< 0.10	0.10 mg/L		< 0.10				10	
Nitrate (as N)	0.015	0.010 mg/L		0.014				10	
Nitrite (as N)	< 0.010	0.010 mg/L		< 0.010				6	
Sulfate	< 1.0	1.0 mg/L		< 1.0				6	
Matrix Spike (B8D2121-MS1)	Sou	rce: 8042387-02	Prepared	I: 2018-05-0	01, Analyze	ed: 2018-0	05-01		
Chloride	16.6	0.10 mg/L	16.0	0.77	99	75-125			
Fluoride	3.87	0.10 mg/L	4.00	< 0.10	96	75-125			
Nitrate (as N)	4.02	0.010 mg/L	4.00	0.014	100	75-125			
Nitrite (as N)	2.06	0.010 mg/L	2.00	< 0.010	103	80-120			
Sulfate	16.3	1.0 mg/L	16.0	< 1.0	97	75-125			

Dissolved Metals, Batch B8D2091

Blank (B8D2091-BLK1)			Prepared: 2018-04-30, Analyzed: 2018-04-30
Aluminum, dissolved	< 0.0050	0.0050 mg/L	
Antimony, dissolved	< 0.00020	0.00020 mg/L	
Arsenic, dissolved	< 0.00050	0.00050 mg/L	
Barium, dissolved	< 0.0050	0.0050 mg/L	
Beryllium, dissolved	< 0.00010	0.00010 mg/L	

REPORTED TO PROJECT	Waterline Resour 2768-18-001	ces Inc Nana	imo				WORK REPOR	ORDER	8042 2018	387 -05-14	14:40
Analyte		Result	RL	Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Dissolved Metals,	Batch B8D2091, Con	ntinued									
Blank (B8D2091-B	LK1), Continued				Prepared	l: 2018-04-3	0, Analyze	d: 2018-0	04-30		
Bismuth, dissolved		< 0.00010	0.00010	mg/L							
Boron, dissolved		< 0.0050	0.0050	mg/L							
Cadmium, dissolved		< 0.000010	0.000010	mg/L							
Calcium, dissolved		< 0.20	0.20	mg/L							
Chromium, dissolved	ı	< 0.00050	0.00050	mg/L							
Cobalt, dissolved		< 0.00010	0.00010								
Copper, dissolved		< 0.00040	0.00040								
Iron, dissolved		< 0.010	0.010								
Lead, dissolved		< 0.00020	0.00020								
Lithium, dissolved	.d	< 0.00010	0.00010								
Magnesium, dissolve		< 0.010	0.010 0.00020								
Manganese, dissolve		< 0.00020 < 0.00010									
Molybdenum, dissolv Nickel, dissolved	eu	< 0.00010	0.00010 0.00040								
Phosphorus, dissolve		< 0.00040		mg/L							
Potassium. dissolved		< 0.10		mg/L							
Selenium, dissolved		< 0.00050	0.00050								
Silicon, dissolved		< 1.0		mg/L							
Silver, dissolved		< 0.000050	0.000050								
Sodium, dissolved		< 0.10		mg/L							
Strontium, dissolved		< 0.0010	0.0010								
Sulfur, dissolved		< 3.0		mg/L							
Tellurium, dissolved		< 0.00050	0.00050	mg/L							
Thallium, dissolved		< 0.000020	0.000020	mg/L							
Thorium, dissolved		< 0.00010	0.00010	mg/L							
Tin, dissolved		< 0.00020	0.00020	mg/L							
Titanium, dissolved		< 0.0050	0.0050	mg/L							
Tungsten, dissolved		< 0.0010	0.0010	mg/L							
Uranium, dissolved		< 0.000020	0.000020	mg/L							
Vanadium, dissolved		< 0.0010	0.0010								
Zinc, dissolved		< 0.0040	0.0040								
Zirconium, dissolved		< 0.00010	0.00010	mg/L							
LCS (B8D2091-BS	1)				-	l: 2018-04-3			14-30		
Aluminum, dissolved		0.0178	0.0050		0.0200		89	80-120			
Antimony, dissolved		0.0202	0.00020		0.0200		101	80-120			
Arsenic, dissolved		0.0195 0.0195	0.00050		0.0200		97 98	80-120			
Barium, dissolved Beryllium, dissolved		0.0195	0.0050 0.00010		0.0200		98	80-120 80-120			
Bismuth, dissolved		0.0200	0.00010		0.0200		100	80-120			
Boron, dissolved		0.0193	0.0050		0.0200		97	80-120			
Cadmium, dissolved		0.0191	0.000010		0.0200		95	80-120			
Calcium, dissolved		2.10		mg/L	2.00		105	80-120			
Chromium, dissolved		0.0186	0.00050		0.0200		93	80-120			
Cobalt, dissolved		0.0188	0.00010		0.0200		94	80-120			
Copper, dissolved		0.0185	0.00040		0.0200		92	80-120			
Iron, dissolved		1.92		mg/L	2.00		96	80-120			
Lead, dissolved		0.0194	0.00020	mg/L	0.0200		97	80-120			
Lithium, dissolved		0.0192	0.00010		0.0200		96	80-120			
Magnesium, dissolve	:d	1.86	0.010	mg/L	2.00		93	80-120			
Manganese, dissolve	:d	0.0186	0.00020	mg/L	0.0200		93	80-120			
Molybdenum, dissolv	ed	0.0190	0.00010	mg/L	0.0200		95	80-120			
Nickel, dissolved		0.0171	0.00040		0.0200		86	80-120			
Phosphorus, dissolve		1.78		mg/L	2.00		89	80-120			
Potassium, dissolved	<u> </u>	1.86		mg/L	2.00		93	80-120			
Selenium dissolved		0.0184	0.00050	ma/l	0.0200		92	80-120			

0.0200

0.00050 mg/L

0.0184

Selenium, dissolved

80-120

REPORTED TO PROJECT	Waterline Resour 2768-18-001	rces Inc Nana	iimo				WORK REPOR	ORDER RTED		387 -05-14	14:40
Analyte		Result	RL	Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Dissolved Metals,	Batch B8D2091, Cor	ntinued									
LCS (B8D2091-BS	1), Continued				Prepared	: 2018-04-3	0, Analyze	ed: 2018-0	04-30		
Silicon, dissolved		1.9	1.0	mg/L	2.00		97	80-120			
Silver, dissolved		0.0189	0.000050		0.0200		94	80-120			
Sodium, dissolved		1.91		mg/L	2.00		95	80-120			
Strontium, dissolved		0.0190	0.0010		0.0200		95	80-120			
Sulfur, dissolved		4.0		mg/L	5.00		80	80-120			
Tellurium, dissolved		0.0199	0.00050		0.0200		99	80-120			
Thallium, dissolved		0.0193	0.000020		0.0200		97	80-120			
Thorium, dissolved		0.0191	0.00010		0.0200		96	80-120			
Tin, dissolved		0.0198	0.00020		0.0200		99	80-120			
Titanium, dissolved		0.0196	0.0050		0.0200		98	80-120			
Tungsten, dissolved		0.0168	0.0010		0.0200		84	80-120			
Uranium, dissolved		0.0218	0.000020		0.0200		109	80-120			
Vanadium, dissolved		0.0184	0.00020		0.0200		92	80-120			
Zinc, dissolved		0.0164	0.0010		0.0200		82	80-120			
Zirconium, dissolved		0.0199	0.0040		0.0200		100	80-120			
	\4 BUB4\					. 0040 04 0			24.00		
Duplicate (B8D209	91-DUP1)		ource: 8042		Prepared	: 2018-04-3	u, Anaiyze	a: 2018-0	04-30		
Aluminum, dissolved		< 0.0050	0.0050			< 0.0050				11	
Antimony, dissolved		< 0.00020	0.00020			< 0.00020				20	
Arsenic, dissolved		< 0.00050	0.00050			< 0.00050				8	
Barium, dissolved		0.0057	0.0050			0.0055				7	
Beryllium, dissolved		< 0.00010	0.00010			< 0.00010				14	
Bismuth, dissolved		< 0.00010	0.00010			< 0.00010				20	
Boron, dissolved		0.0195	0.0050			0.0164				13	
Cadmium, dissolved		< 0.000010	0.000010			< 0.000010				20	
Calcium, dissolved		5.92		mg/L		5.40			9	8	
Chromium, dissolved		< 0.00050	0.00050			< 0.00050				14	
Cobalt, dissolved		< 0.00010	0.00010			< 0.00010				10	
Copper, dissolved		< 0.00040	0.00040			< 0.00040				20	
Iron, dissolved		0.021		mg/L		0.020				14	
Lead, dissolved		< 0.00020	0.00020			< 0.00020				20	
Lithium, dissolved	.1	< 0.00010	0.00010			< 0.00010				14	
Magnesium, dissolve		0.957		mg/L		0.890			7	6	
Manganese, dissolve		0.00424	0.00020			0.00388			9	9	
Molybdenum, dissolv	ed	0.00010	0.00010			0.00013				19	
Nickel, dissolved	. al	< 0.00040	0.00040			< 0.00040				20	
Phosphorus, dissolve		< 0.050		mg/L		< 0.050				14	
Potassium, dissolved		0.29		mg/L		0.28				8	
Selenium, dissolved		< 0.00050	0.00050			< 0.00050				20	
Silicon, dissolved		< 1.0		mg/L		5.1				12	
Silver, dissolved		0.000075	0.000050			< 0.000050				20	
Sodium, dissolved		2.06		mg/L		1.94			6	6	
Strontium, dissolved		0.0219	0.0010			0.0204			7	6	
Sulfur, dissolved		< 3.0		mg/L		< 3.0				20	
Tellurium, dissolved		< 0.00050	0.00050			< 0.00050				20	
Thallium, dissolved		< 0.000020	0.000020			< 0.000020				13	
Thorium, dissolved		< 0.00010	0.00010			< 0.00010				20	
Tin, dissolved		< 0.00020	0.00020			< 0.00020				20	
Titanium, dissolved		< 0.0050	0.0050			< 0.0050				20	
Tungsten, dissolved		< 0.0010	0.0010			< 0.0010				20	
Uranium, dissolved		< 0.000020	0.000020			< 0.000020				14	
Vanadium, dissolved		0.0011	0.0010			0.0010				20	
Zinc, dissolved		0.0069	0.0040			0.0074				11	
Zirconium, dissolved		< 0.00010	0.00010	mg/L		< 0.00010				20	

REPORTED TO PROJECT	Waterline Resources 2768-18-001	Inc Nana	imo			WORK REPOR	ORDER TED	8042 2018	387 -05-14	14:40
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifie
Dissolved Metals, I	Batch B8D2091, Continu	ed								
Reference (B8D209	91-SRM1)			Prepared	l: 2018-04-3	30, Analyze	d: 2018-0	4-30		
Aluminum, dissolved		0.212	0.0050 mg/L	0.233		91	79-114			
Antimony, dissolved		0.0453	0.00020 mg/L	0.0430		105	89-123			
Arsenic, dissolved		0.442	0.00050 mg/L	0.438		101	87-113			
Barium, dissolved		3.44	0.0050 mg/L	3.35		103	85-114			
Beryllium, dissolved		0.209	0.00010 mg/L	0.213		98	79-122			
Boron, dissolved		1.57	0.0050 mg/L	1.74		90	79-117			
Cadmium, dissolved		0.217	0.000010 mg/L	0.224		97	89-112			
Calcium, dissolved		7.84	0.20 mg/L	7.69		102	85-120			
Chromium, dissolved		0.429	0.00050 mg/L	0.437		98	87-113			
Cobalt, dissolved		0.124	0.00010 mg/L	0.128		97	90-117			
Copper, dissolved		0.840	0.00040 mg/L	0.844		100	90-115			
Iron, dissolved		1.23	0.010 mg/L	1.29		95	86-112			
Lead, dissolved		0.115	0.00020 mg/L	0.112		103	90-113			
Lithium, dissolved	.	0.102	0.00010 mg/L	0.104 6.92		98 94	77-127 84-116			
Magnesium, dissolved		6.51 0.330	0.010 mg/L 0.00020 mg/L	0.345		96	85-113			
Manganese, dissolved Molybdenum, dissolved		0.330	0.00020 mg/L	0.343		97	87-112			
Nickel, dissolved	su .	0.802	0.00040 mg/L	0.420		95	90-114			
Phosphorus, dissolved	 d	0.423	0.050 mg/L	0.495		85	74-119			
Potassium, dissolved	<u>u</u>	2.97	0.10 mg/L	3.19		93	78-119			
Selenium, dissolved		0.0318	0.00050 mg/L	0.0331		96	89-123			
Sodium, dissolved		17.6	0.10 mg/L	19.1		92	81-117			
Strontium, dissolved		0.876	0.0010 mg/L	0.916		96	82-111			
Thallium, dissolved		0.0383	0.000020 mg/L	0.0393		97	90-113			
Uranium, dissolved		0.256	0.000020 mg/L	0.266		96	87-113			
Vanadium, dissolved		0.841	0.0010 mg/L	0.869		97	85-110			
Zinc, dissolved		0.859	0.0040 mg/L	0.881		98	88-114			
General Parameters Blank (B8D1945-Bl Carbon, Total Organic	LK1)	< 0.50	0.50 mg/L	Prepared	l: 2018-04-2	29, Analyze	d: 2018-0	4-29		
Blank (B8D1945-Bl	K2)		-	Prenared	l: 2018-04-2	0 Δnalvze	d· 2018-0	4-20		
•		< 0.50	0.50 mg/l	Fiepaieu	1. 2010-04-2	.9, AllalyZe	u. 2010-0	4-23		
Carbon, Total Organic		< 0.50	0.50 mg/L							
LCS (B8D1945-BS1	•			· ·	l: 2018-04-2			4-29		
Carbon, Total Organic		9.21	0.50 mg/L	10.0		92	78-116			
LCS (B8D1945-BS2	2)			Prepared	l: 2018-04-2	9, Analyze	d: 2018-0	4-29		
Carbon, Total Organic		9.45	0.50 mg/L	10.0		94	78-116			
General Parameters				Prepared	l: 2018-05-0	01, Analyze	d: 2018-0	5-01		
Turbidity		< 0.10	0.10 NTU							
Blank (B8D2019-Bl	LK2)			Prepared	l: 2018-05-0	1, Analyze	d: 2018-0	5-01		
Turbidity		< 0.10	0.10 NTU							
LCS (B8D2019-BS1	1)			Prepared	l: 2018-05-0	1, Analyze	d: 2018-0	5-01		
Turbidity	•	38.6	0.10 NTU	40.0		96	90-110			
LCS (B8D2019-BS2	2)			Prenared	l: 2018-05-0	1 Analyzo		5-01		
	-)	20 0	0 10 NITH		. 2010-03-0	97		J-0 I		
Turbidity		38.9	0.10 NTU	40.0		97	90-110			

REPORTED TO Waterline Resource PROJECT 2768-18-001	es Inc Nanain	10			WORK REPOR	ORDER RTED	8042 2018	2387 3-05-14	14:40
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
General Parameters, Batch B8D2034									
Blank (B8D2034-BLK1)			Prepared	l: 2018-04-2	9, Analyze	ed: 2018-0	4-29		
Ammonia, Total (as N)	< 0.020	0.020 mg/L							
LCS (B8D2034-BS1)			Prepared	l: 2018-04-2	9 Analyze	ed: 2018-0	4-29		
Ammonia, Total (as N)	1.06	0.020 mg/L	1.00		106	90-115			
General Parameters, Batch B8D2041									
Blank (B8D2041-BLK1)			Prepared	l: 2018-05-0	2. Analyze	ed: 2018-0	5-02		
Colour, True	< 5.0	5.0 CU			_, , ,,				
·			Droparad	· 2019 05 0	12 Apolyzo	M- 2010 0	5.02		
Blank (B8D2041-BLK2)	< 5.0	5.0 CU	гтератео	l: 2018-05-0	z, Analyze	u. ∠U 10-U	J-UZ		
Colour, True	< 5.0	5.0 CO							
LCS (B8D2041-BS1)				l: 2018-05-0			5-02		
Colour, True	10	5.0 CU	10.0		101	85-115			
LCS (B8D2041-BS2)			Prepared	l: 2018-05-0	2, Analyze	ed: 2018-0	5-02		
Colour, True	10	5.0 CU	10.0		103	85-115			
Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3)	< 1.0 < 1.0 < 1.0	1.0 mg/L 1.0 mg/L 1.0 mg/L	Prepared	l: 2018-05-0	1, Analyze	ed: 2018-0	5-01		
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Hydroxide (as CaCO3)	< 1.0 < 1.0	1.0 mg/L							
Conductivity (EC) Blank (B8E0072-BLK2)	< 1.0	1.0 μS/cm	Prepared	l: 2018-05-0	1, Analyze	ed: 2018-0	5-01		
Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Conductivity (EC)	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	1.0 mg/L 1.0 µS/cm							
LCS (B8E0072-BS1)			Prenared	l: 2018-05-0	11 Analyze	.d. 2018-0	5-01		
Alkalinity, Total (as CaCO3)	98.7	1.0 mg/L	100	2010-00-0	99	92-106			
LCS (B8E0072-BS2)	55.1	mg/L		l: 2018-05-0			5-01		
Alkalinity, Total (as CaCO3)	98.4	1.0 mg/L	100	0 10 00-0	98	92-106			
LCS (B8E0072-BS3)	00.1			l: 2018-05-0			5-01		
Conductivity (EC)	1400	1.0 µS/cm	1410		99	95-104			
LCS (B8E0072-BS4)		-	Prenared	l: 2018-05-0	1 Analyze	d: 2018-0	5-01		
Conductivity (EC)	1410	1.0 μS/cm	1410	0 .0 00-0	100	95-104			
General Parameters, Batch B8E0160									
Blank (B8E0160-BLK1)			Prepared	l: 2018-05-0	2, Analyze	ed: 2018-0	5-02		
Sulfide, Total	< 0.020	0.020 mg/L							

REPORTED TO PROJECT	Waterline Resource 2768-18-001	s inc Nana				REPOR	ORDER	8042 2018	2387 8-05-14	14:40
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifie
General Parameters	s, Batch B8E0160, Con	ntinued								
LCS (B8E0160-BS1)			Prepared	: 2018-05-02	2, Analyze	d: 2018-0	5-02		
Sulfide, Total		0.492	0.020 mg/L	0.500		98	82-116			
General Parameters	s, Batch B8E0209									
Reference (B8E020	9-SRM1)			Prepared	: 2018-05-02	2, Analyze	d: 2018-0	5-02		
pH	·	7.02	0.10 pH units	7.01		100	98-102			HT2
Reference (B8E020	19-SRM2)			Prenared	: 2018-05-03	3 Analyze	d· 2018-0	5-03		
pH	JO-OKWIZ)	7.02	0.10 pH units	7.01	. 2010 00 00	100	98-102	0 00		HT2
General Parameters	s. Batch B8E0267									
Blank (B8E0267-BL	_K1)			Prepared	: 2018-05-03	3, Analyze	d: 2018-0	5-04		
Nitrogen, Total Kjeldal	nl	< 0.050	0.050 mg/L							
Blank (B8E0267-BL	_K2)			Prepared	: 2018-05-03	3, Analyze	d: 2018-0	5-04		
Nitrogen, Total Kjeldah	•	< 0.050	0.050 mg/L							
LCS (B8E0267-BS1	1)			Prepared	: 2018-05-0	3 Analyze	d· 2018-0	5-04		
Nitrogen, Total Kjeldah	•	0.905	0.050 mg/L	1.00		90	84-121			
					: 2018-05-0	2 Apolyzo		5.04		
LCS (B8E0267-BS2 Nitrogen, Total Kjeldah	<i>,</i>	0.924	0.050 mg/L	1.00	. 2010-03-0	92	84-121	3-04		
General Parameters Blank (B8E0414-BL Alkalinity, Total (as Ca	_K1)	< 2.0	2.0 mg/L	Prepared	: 2018-05-04	1, Analyze	d: 2018-0	5-04		
Bicarbonate (HCO3)		< 2.0	2.0 mg/L							
Carbonate (CO3)		< 2.0	2.0 mg/L							
Hydroxide (OH)		< 2.0	2.0 mg/L							
LCS (B8E0414-BS1	1)		<u> </u>	Prepared	: 2018-05-04	4, Analyze	d: 2018-0	5-04		
•	•	246	2.0 mg/L	Prepared 250	: 2018-05-04	4, Analyze	d: 2018-0 94-108	5-04		
Alkalinity, Total (as Ca	CO3)		-	250		99	94-108			
Alkalinity, Total (as Ca Total Metals, Batch Blank (B8E0009-BL	CO3) B8E0009	246	2.0 mg/L	250	: 2018-05-04 : 2018-05-0	99	94-108			
Alkalinity, Total (as Ca Total Metals, Batch Blank (B8E0009-BL Aluminum, total	CO3) B8E0009	246 < 0.0050	2.0 mg/L 0.0050 mg/L	250		99	94-108			
Alkalinity, Total (as Ca Total Metals, Batch Blank (B8E0009-BL Aluminum, total Antimony, total	CO3) B8E0009	< 0.0050 < 0.00020	2.0 mg/L 0.0050 mg/L 0.00020 mg/L	250		99	94-108			
Alkalinity, Total (as Ca Total Metals, Batch Blank (B8E0009-BL Aluminum, total Antimony, total Arsenic, total	CO3) B8E0009	246 < 0.0050	2.0 mg/L 0.0050 mg/L	250		99	94-108			
Alkalinity, Total (as Ca Total Metals, Batch Blank (B8E0009-BL Aluminum, total Antimony, total Arsenic, total Barium, total	CO3) B8E0009	< 0.0050 < 0.00020 < 0.00050	2.0 mg/L 0.0050 mg/L 0.00020 mg/L 0.00050 mg/L	250		99	94-108			
Alkalinity, Total (as Ca Fotal Metals, Batch Blank (B8E0009-BL Aluminum, total Antimony, total Arsenic, total Barium, total Beryllium, total	CO3) B8E0009	< 0.0050 < 0.00020 < 0.00050 < 0.00050 < 0.0050	2.0 mg/L 0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.0050 mg/L 0.00010 mg/L 0.00010 mg/L	250		99	94-108			
Alkalinity, Total (as Ca Total Metals, Batch Blank (B8E0009-BL Aluminum, total Antimony, total Arsenic, total Barium, total Beryllium, total Bismuth, total Boron, total	CO3) B8E0009	<0.0050 <0.00020 <0.00050 <0.0050 <0.00010 <0.00010 <0.0050	2.0 mg/L 0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.0050 mg/L 0.00010 mg/L 0.00010 mg/L 0.00010 mg/L	250		99	94-108			
Alkalinity, Total (as Ca Total Metals, Batch Blank (B8E0009-BL Aluminum, total Antimony, total Arsenic, total Barium, total Beryllium, total Bismuth, total Boron, total Cadmium, total	CO3) B8E0009	<0.0050 <0.00050 <0.00020 <0.00050 <0.00050 <0.00010 <0.00010 <0.00050 <0.000010	2.0 mg/L 0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.0050 mg/L 0.00010 mg/L 0.00010 mg/L 0.0050 mg/L	250		99	94-108			
Alkalinity, Total (as Ca Total Metals, Batch Blank (B8E0009-BL Aluminum, total Antimony, total Arsenic, total Barium, total Beryllium, total Bismuth, total Boron, total Cadmium, total Calcium, total	CO3) B8E0009	<0.0050 <0.00050 <0.00020 <0.00050 <0.00050 <0.00010 <0.00010 <0.00050 <0.000010 <0.000010 <0.000010	2.0 mg/L 0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.0050 mg/L 0.00010 mg/L 0.0050 mg/L 0.00010 mg/L 0.0050 mg/L 0.00010 mg/L 0.00010 mg/L	250		99	94-108			
Alkalinity, Total (as Ca Total Metals, Batch Blank (B8E0009-BL Aluminum, total Antimony, total Barium, total Beryllium, total Bismuth, total Boron, total Cadmium, total Calcium, total Chromium, total	CO3) B8E0009	 < 0.0050 < 0.00020 < 0.00050 < 0.0050 < 0.00010 < 0.0050 < 0.00010 < 0.000010 < 0.000010 < 0.000010 < 0.0000000 < 0.000000 < 0.0000000 < 0.000000 < 0.000000 < 0.00000 < 0.000000 < 0.00000 < 0.0000 < 0.0000<td>2.0 mg/L 0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.0050 mg/L 0.00010 mg/L 0.0050 mg/L 0.0050 mg/L 0.00010 mg/L 0.000010 mg/L 0.000010 mg/L 0.000010 mg/L</td><td>250</td><td></td><td>99</td><td>94-108</td><td></td><td></td><td></td>	2.0 mg/L 0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.0050 mg/L 0.00010 mg/L 0.0050 mg/L 0.0050 mg/L 0.00010 mg/L 0.000010 mg/L 0.000010 mg/L 0.000010 mg/L	250		99	94-108			
Alkalinity, Total (as Ca Fotal Metals, Batch Blank (B8E0009-BL Aluminum, total Antimony, total Barium, total Beryllium, total Bismuth, total Boron, total Cadmium, total Calcium, total Chromium, total Chobalt, total	CO3) B8E0009	<pre></pre>	2.0 mg/L 0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.0050 mg/L 0.00010 mg/L 0.0050 mg/L 0.00010 mg/L 0.000010 mg/L 0.000010 mg/L 0.000010 mg/L 0.000010 mg/L	250		99	94-108			
Alkalinity, Total (as Ca Fotal Metals, Batch Blank (B8E0009-BL Aluminum, total Antimony, total Arsenic, total Barium, total Beryllium, total Bismuth, total Boron, total Cadmium, total Cadmium, total Chromium, total Chromium, total Copper, total	CO3) B8E0009	 < 0.0050 < 0.00020 < 0.00050 < 0.00050 < 0.00010 < 0.00050 < 0.000010 < 0.000040 	2.0 mg/L 0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.0050 mg/L 0.00010 mg/L 0.0050 mg/L 0.00010 mg/L 0.000010 mg/L 0.000010 mg/L 0.000010 mg/L 0.000010 mg/L 0.000010 mg/L	250		99	94-108			
Alkalinity, Total (as Ca Fotal Metals, Batch Blank (B8E0009-BL Aluminum, total Antimony, total Arsenic, total Barium, total Beryllium, total Bismuth, total Boron, total Cadmium, total Calcium, total Chromium, total Chobalt, total Copper, total Iron, total	CO3) B8E0009	 < 0.0050 < 0.00020 < 0.00050 < 0.00050 < 0.00010 < 0.00050 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.00040 < 0.0010 	2.0 mg/L 0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.0050 mg/L 0.00010 mg/L 0.00010 mg/L 0.000010 mg/L 0.00010 mg/L 0.00010 mg/L	250		99	94-108			
LCS (B8E0414-BS1 Alkalinity, Total (as Ca Fotal Metals, Batch Blank (B8E0009-BL Aluminum, total Antimony, total Arsenic, total Beryllium, total Beryllium, total Bismuth, total Boron, total Cadmium, total Calcium, total Chromium, total Chromium, total Cobalt, total Copper, total Iron, total Lead, total Lead, total Lithium, total	CO3) B8E0009	 < 0.0050 < 0.00020 < 0.00050 < 0.00050 < 0.00010 < 0.00050 < 0.000010 < 0.000040 	2.0 mg/L 0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.0050 mg/L 0.00010 mg/L 0.0050 mg/L 0.00010 mg/L 0.000010 mg/L 0.000010 mg/L 0.000010 mg/L 0.000010 mg/L 0.000010 mg/L	250		99	94-108			

REPORTED TO PROJECT	Waterline Resources Inc 2768-18-001	Nan	aimo			WORK REPOR	ORDER TED	8042 2018	387 -05-14	14:40
Analyte	1	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Total Metals, Batc	h B8E0009, Continued									
Blank (B8E0009-B	LK1), Continued			Prepared	l: 2018-05-0	1, Analyze	d: 2018-0	5-03		
Manganese, total	< 0	0.00020	0.00020 mg/L							
Mercury, total	< 0.0	000040	0.000040 mg/L							
Molybdenum, total		0.00010	0.00010 mg/L							
Nickel, total		0.00040	0.00040 mg/L							
Phosphorus, total		< 0.050	0.050 mg/L							
Potassium, total	- 0	< 0.10	0.10 mg/L							
Selenium, total Silicon, total	< 0	0.00050 < 1.0	0.00050 mg/L 1.0 mg/L							
Silver, total	< 0.0	000050	0.000050 mg/L							
Sodium, total	- 0.0	< 0.10	0.10 mg/L							
Strontium, total	<	0.0010	0.0010 mg/L							
Sulfur, total		< 3.0	3.0 mg/L							
Tellurium, total	< 0	0.00050	0.00050 mg/L							
Thallium, total		000020	0.000020 mg/L							
Thorium, total	< 0	0.00010	0.00010 mg/L							
Tin, total	< 0	0.00020	0.00020 mg/L							
Titanium, total	<	0.0050	0.0050 mg/L							
Tungsten, total	<	0.0010	0.0010 mg/L							
Uranium, total		000020	0.000020 mg/L							
Vanadium, total		0.0010	0.0010 mg/L							
Zinc, total		0.0040	0.0040 mg/L							
Zirconium, total	< 0	0.00010	0.00010 mg/L							
LCS (B8E0009-BS	1)			Prepared	: 2018-05-0	1, Analyze	d: 2018-0	5-03		
Aluminum, total		0.0239	0.0050 mg/L	0.0200		119	80-120			
Antimony, total		0.0226	0.00020 mg/L	0.0200		113	80-120			
Arsenic, total		0.0214	0.00050 mg/L	0.0200		107	80-120			
Barium, total		0.0212	0.0050 mg/L	0.0200		106	80-120			
Beryllium, total		0.0209	0.00010 mg/L	0.0200		104	80-120			
Bismuth, total		0.0223	0.00010 mg/L	0.0200		111	80-120			
Boron, total		0.0223	0.0050 mg/L	0.0200		112	80-120			
Cadmium, total		0.0218	0.000010 mg/L	0.0200		109	80-120			
Calcium, total		2.26	0.20 mg/L	2.00		113	80-120			
Chromium, total		0.0198	0.00050 mg/L	0.0200		99	80-120			
Cobalt, total		0.0204	0.00010 mg/L	0.0200		102	80-120			
Copper, total		1.99	0.00040 mg/L	0.0200		108	80-120			
Iron, total Lead, total		0.0223	0.010 mg/L 0.00020 mg/L	2.00 0.0200		100 111	80-120 80-120			
Lithium, total		0.0223	0.00020 Hig/L 0.00010 mg/L	0.0200		112	80-120			
Magnesium, total		2.10	0.010 mg/L	2.00		105	80-120			
Manganese, total		0.0195	0.00020 mg/L	0.0200		98	80-120			
Mercury, total		000854	0.000040 mg/L	0.00100		85	80-120			
Molybdenum, total		0.0209	0.00010 mg/L	0.0200		105	80-120			
Nickel, total		0.0208	0.00040 mg/L	0.0200		104	80-120			
Phosphorus, total		1.91	0.050 mg/L	2.00		96	80-120			
Potassium, total		1.97	0.10 mg/L	2.00		99	80-120			
Selenium, total		0.0220	0.00050 mg/L	0.0200		110	80-120			
Silicon, total		2.1	1.0 mg/L	2.00		105	80-120			
Silver, total		0.0219	0.000050 mg/L	0.0200		109	80-120			
Sodium, total		2.04	0.10 mg/L	2.00		102	80-120			
Strontium, total		0.0198	0.0010 mg/L	0.0200		99	80-120			
Sulfur, total		4.0	3.0 mg/L	5.00		80	80-120			
Tellurium, total		0.0225	0.00050 mg/L	0.0200		112	80-120			
Thallium, total		0.0221	0.000020 mg/L	0.0200		111	80-120			
Thorium, total		0.0220	0.00010 mg/L	0.0200		110	80-120			
Tin, total		0.0221	0.00020 mg/L	0.0200		110	80-120			

								_		
REPORTED TO PROJECT	Waterline Resource 2768-18-001	ces Inc Nana	imo			WORK REPOR	ORDER TED	8042 2018	14:40	
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Total Metals, Batch	n B8E0009, Continue	d								
LCS (B8E0009-BS	1), Continued			Prepared	: 2018-05-01	I, Analyze	d: 2018-0	5-03		
Titanium, total	<i></i>	0.0200	0.0050 mg/L	0.0200		100	80-120			
Tungsten, total		0.0162	0.0000 mg/L	0.0200		81	80-120			
Uranium, total		0.0204	0.000020 mg/L	0.0200		102	80-120			
Vanadium, total		0.0193	0.0010 mg/L	0.0200		97	80-120			
Zinc, total		0.0233	0.0040 mg/L	0.0200		117	80-120			
Zirconium, total		0.0207	0.00010 mg/L	0.0200		104	80-120			
Reference (B8E000	09-SRM1)			Prepared	: 2018-05-01	I, Analyze	d: 2018-0	5-03		
Aluminum, total	•	0.301	0.0050 mg/L	0.303		99	82-114			
Antimony, total		0.0516	0.00020 mg/L	0.0511		101	88-115			
Arsenic, total		0.120	0.00050 mg/L	0.118		101	88-111			
Barium, total		0.799	0.0050 mg/L	0.823		97	83-110			
Beryllium, total		0.0492	0.00010 mg/L	0.0496		99	80-119			
Boron, total		3.47	0.0050 mg/L	3.45		101	80-118			
Cadmium, total		0.0499	0.000010 mg/L	0.0495		101	90-110			
Calcium, total		10.9	0.20 mg/L	11.6		94	85-113			
Chromium, total		0.230	0.00050 mg/L	0.250		92	88-111			
Cobalt, total		0.0370	0.00010 mg/L	0.0377		98	90-114			
Copper, total		0.489	0.00040 mg/L	0.486		101	90-117			
Iron, total		0.472	0.010 mg/L	0.488		97	90-116			
Lead, total		0.211	0.00020 mg/L	0.204		103	90-110			
Lithium, total		0.408	0.00010 mg/L	0.403		101	79-118			
Magnesium, total		3.77	0.010 mg/L	3.79		100	88-116			
Manganese, total		0.0987	0.00020 mg/L	0.109		91	88-108			
Mercury, total		0.00468	0.000040 mg/L	0.00489		96	80-120			
Molybdenum, total		0.194	0.00010 mg/L	0.198		98	88-110			
Nickel, total		0.242	0.00040 mg/L	0.249		97	90-112			
Phosphorus, total		0.184	0.050 mg/L	0.227		81	72-118			
Potassium, total		6.76	0.10 mg/L	7.21		94	87-116			
Selenium, total		0.127	0.00050 mg/L	0.121		105	90-122			
Sodium, total		7.24	0.10 mg/L	7.54		96	86-118			
Strontium, total		0.346	0.0010 mg/L	0.375		92	86-110			
Thallium, total		0.0842	0.000020 mg/L	0.0805		105	90-113			
Uranium, total		0.0316	0.000020 mg/L	0.0306		103	88-112			
Vanadium, total		0.351	0.0010 mg/L	0.386		91	87-110			
Zinc, total		2.47	0.0040 mg/L	2.49		99	90-113			

QC Qualifiers:

HT2 The 15 minute recommended holding time (from sampling to analysis) has been exceeded - field analysis is recommended.

APPENDIX 3: REVISION HISTORY

REPORTED TO PROJECT	Waterline R 2768-18-00	esources Inc Nana 1	imo	WORK ORDER REPORTED	8042387 2018-05-14 14:40			
Sample ID	Changed	Change	Analysis	Analyte(s)				
8042387-01	2018-05-07	Added	Metals, Dissolved by ICPMS (All) Pkg					
8042387-01	2018-05-07	Added	Metals, Total by ICPMS (All) Pkg					
8042387-01	2018-05-07	• • • • •						
8042387-02	2018-05-07	Analyte Removed	Dissolved Metals by ICPMS	dissolved, Berylliu dissolved, Cadmi Calcium, dissolved dissolved, Cobalt dissolved, Iron, d dissolved, Lithium Magnesium, dissolved, Molybo Nickel, dissolved, Selenium, dissolve dissolved, Thalliu dissolved, Titaniu Tungsten, dissolve	c., dissolved, Barium, um, dissolved, Boron, um, dissolved, d, Chromium, dissolved, Copper, dissolved, Lead, n, dissolved, blved, Manganese, denum, dissolved, Potassium, dissolved, d, Strontium, m, dissolved, Tin, m, dissolved,			
8042387-02	2018-05-07	Added	Metals, Dissolved by ICPMS (All) Pkg					
8042387-02	2018-05-07	Added	Metals, Total by ICPMS (All) Pkg					
8042387-01	2018-05-14	Added	Alkalinity w/ Calc Pkg					

3C V6V 2K9 -1599

CHAIN OF CUSTODY RECORD

DATE: Apr 26/18 RECEIVED BY:

RELINQUISHED BY:

BC V1X 5C3 .3893

		CARO BC COC, Rev 2015-0
COC#	1	PAGE 1 OF

DATE: Of

	ANALYTICAL SERVI	CE	ES								AB T5S 1H7	1		Vol	10	1.				TIME				\	1/	6	up	n				IME:			
	Caring About Results Obvio	ous	ly		*	. 8	3 0 4 2 3		'		9700		ROJE		03	11	o M			LIIVIC	15	10				T IN			_		П.	IIVIE; C	16	-)	-
	RT TO:			INVOICE TO: SAME AS REPORT TO										2768-18-001										CI	/RD			ť.							
OMP	ANY: Waterline Resources Inc.											_ TU	TURNAROUND TIME REQUESTED: RE								REG	ULA	TOR	Reas on											
DDRESS: 2430 Jingle Pot Rd					ADDRESS: 6415 - 10th Street SE								Routine: (5-7 Days) 🔀 Can										n Drin		Regs on Report?										
Nanaimo, BC V9R 6W2																								ing W		ОТ	OTHER*								
ONTACT: Jolene Hermanson					CONTRACT III									*Contact Lab To Confirm. Surcharge May Apply AL																				LW	Г
EL/FAX: 250.585.9114				TEL/FAX: 250.585.9114																		_	YSES REQUESTED:												
		Sdat THE			EMA EMA	IL 1 IL 2	2:	MAIL 🔀 son@wate								Non-Chlor.			된	Hg 1	וורי שורי				_	 [1 - Attache	Cations					
MAIL 2:					EMA	IL 3	3:					- -				Non-	HAA	I.RBIC							F	E. coli		hed	Pkg						
MAIL 3:					PO :		2768-1					PHC F1					Г	뿔	IAL	SOL	_ r	- [ıttac	istry	Dissoived					
* NEW *	* If you would like to sign up for ClientConnect					in, (gs, cl					PHC F2-F4	ı	ted	STC	ACI	7	SDIS	K K					MS		ee A	hem	550					
AMPL	ED BY:	-	MAT		_	2 -	SAMPLII	NG:			OMMENTS:	⊢ <mark>'</mark> HAV	VPH	구 도	L/HEPH	Chlorinated	GLYCOLS		ATE	ATEF				16	ORN	FOR		Je-S	er C	10 2					
	CLIENT SAMPLE ID:	DRINKING WATE	OTHER WATER	SOIL	OTHER # CONTAINE	# COINTAINERS	DATE DD-MMM-YY	ТІМЕ нн:мм	CHLORINATE	FILTERED	(e.g. flow/volume media ID/notes)	, X			PAH 🗍 L/	OLS	PCB 🗍 GI	PESTICIDES	METALS - WATER TOTAL	METALS - WATER DISSOLVED	MEIALS - SOIL (SALM)	TSS VSS TDS	BOD COD	TOG MOG	FECAL COLIFORMS	TOTAL COLIFORMS	ASBESTOS	VIHA Package - See Attached	Routine Water Chemistry Pkg 1	Total ¿				4	HOLD
	TW18-1	1					26-Apr-18	10:30											1	1							П	1	П						
	Surface Water		1			_	26-Apr-18													V									1	/				+	
			H									+			-					+								H		V	\Box			+	_
			H	Н	+	+						+						-	-	+	-		+					\vdash	\vdash	\vdash	\vdash	-		+	
			\vdash		+	+						+								-	1		+		-			\sqcup	$\vdash\vdash$	\vdash		\dashv	-	+	_
						1						\perp	1											_				\sqcup	\square	Ш	Ш	\perp	4	\perp	_
																														4					
																														П					
					1	+						-								\top				+						- 5-			1	+	-
		H	\Box		+	+						+	+	-				-	+	+	+	+	+	+	-	-	\vdash	\vdash	\vdash	\vdash	\vdash	+	+	+	_
					-	-						_	-						_	4	+	-	_	-				\sqcup	\square	\vdash			_	\perp	
							**					\perp																							
																																			-
																			-									П							
HIPPIN	IG INSTRUCTIONS: Return Cooler(s)										 0 days after Rep	port ı	unles	s oth	nerw	ise s	peci	fied));			AYM		:				CEIP					/		
upplies	Needed:						Days Longe					Α	. L. C	5						_		HEQUI REDI T			6 Page 1			C 1000	11.5	:2		Y		V [
		VII	HA N	Ainir	num	Wa	ater Quality Par	ameters: T	ota	meta	no dissolved	I. NO	MICF	ROBIC	OLOG	SY OI	R UV	T REC	QUIRI	D	D	EBIT	Г				R 2 (° R 3 (°	_		_		: Y [: Y [リト	
Routine Water Chemistry Pkg: total cations (Mg, Ca, Na) no					Na) net dissolved	: 						8		ash Ivoice							YF														

MINIMUM WATER OUALITY PARAMETERS TO BE ANALYZED

SHALLOW WELLS, DEEP WELLS, and SPRINGS

MICROBIOLOGICAL

Escherichia coli
Total coliform
Non-coliform bacteria
Iron and sulphur Bacteria (deep wells)
Heterotrophic Plate Counts

for NOTE: Saltair) April Microbiology 26, 2018 and analysis IVU NOT (CVRD required

PHYSICAL/CHEMICAL

Alkalinity
Ammonia
Arsenic
Chloride
Colour
Conductivity
Corrosiveness
Corrosiveness

Fluoride
Hardness
Metals Scan 6 (total AND Nitrite Colissowed Organic Nitrogen

Selenium /
Sulphate /
Sulphide (as hydrogen sulphide) ⁴ /
Total Dissolved Solids /
Total Organic Carbon ⁴⁵ /
Turbidity /
UVT ⁷

- compounds. If parasitic pollution is suspected, Giardia lamblia and/or cryptosporidium analysis may be Analysis of additional parameters may be required based on the results of initial analysis and on potential parameters. If petroleum pollution is suspected (underground fuel storage) analyze for alkyl benzene pollution is suspected, identify what chemicals may have been used and analyze for most likely indicator impact by nearby sources of contamination or polluting sources. If industrial, agricultural or pesticide
- 2. the Examination of Water and Wastewater" (latest edition) or other acceptable procedure. reasonably assess the water suitability for drinking purposes and to determine what, if any, treatment might be needed. Analyses must be conducted in accordance with methods prescribed in "Standard Methods for Guidelines for Analyses must be sufficiently accurate so that the minimum detectable concentration is less than 10% of Water Protection Regulation where applicable. Other analysis must provide sufficient information to Canadian Drinking Water Quality, the Drinking Water Protection Act or the Drinking

Bacterial analysis must be conducted at an approved laboratory (http://lmlabs.phsa.ca/about-us/who-we-are/bccentre-for-disease-control-public-health-laboratory)

Conductance/Specific Conductance

³ Calcium Carbonate saturation/Langelier's index

For deep wells: On site or preserve sample, or use alternative method of confirming that water has satisfactory odour

If Turbidity is less than 1.0 mg/L, Dissolved Organic Carbon may be used as an alternative to Total Organic Carbon.

molybdenum, nickel, phosphorous, potassium, silver, sodium, zinc (expand if mineralized to include mercury). At least: aluminum, barium, boron, cadmium, calcium, chromium, copper, iron, lead, magnesium, manganese,

Where UV is being considered as part of the water treatment process, %UVT, calculated from UVA.